Dynamic fine-tuning layer selection using Kullback-Leibler divergence

被引:5
|
作者
Wanjiku, Raphael Ngigi [1 ]
Nderu, Lawrence [1 ]
Kimwele, Michael [1 ]
机构
[1] Jomo Kenyatta Univ Agr & Technol, Sch Comp & Informat Technol, Nairobi, Kenya
关键词
layer selection; Kullback-Leibler divergence; weight-correlation;
D O I
10.1002/eng2.12595
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The selection of layers in the transfer learning fine-tuning process ensures a pre-trained model's accuracy and adaptation in a new target domain. However, the selection process is still manual and without clearly defined criteria. If the wrong layers in a neural network are selected and used, it could lead to poor accuracy and model generalization in the target domain. This paper introduces the use of Kullback-Leibler divergence on the weight correlations of the model's convolutional neural network layers. The approach identifies the positive and negative weights in the ImageNet initial weights selecting the best-suited layers of the network depending on the correlation divergence. We experiment on four publicly available datasets and six ImageNet pre-trained models used in past studies for results comparisons. This proposed approach method yields better accuracies than the standard fine-tuning baselines with a margin accuracy rate of 10.8%-24%, thereby leading to better model adaptation for target transfer learning tasks.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Fault detection in dynamic systems using the Kullback-Leibler divergence
    Xie, Lei
    Zeng, Jiusun
    Kruger, Uwe
    Wang, Xun
    Geluk, Jaap
    CONTROL ENGINEERING PRACTICE, 2015, 43 : 39 - 48
  • [2] Renyi Divergence and Kullback-Leibler Divergence
    van Erven, Tim
    Harremoes, Peter
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (07) : 3797 - 3820
  • [3] The fractional Kullback-Leibler divergence
    Alexopoulos, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (07)
  • [4] BOUNDS FOR KULLBACK-LEIBLER DIVERGENCE
    Popescu, Pantelimon G.
    Dragomir, Sever S.
    Slusanschi, Emil I.
    Stanasila, Octavian N.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [5] Kullback-Leibler Divergence Revisited
    Raiber, Fiana
    Kurland, Oren
    ICTIR'17: PROCEEDINGS OF THE 2017 ACM SIGIR INTERNATIONAL CONFERENCE THEORY OF INFORMATION RETRIEVAL, 2017, : 117 - 124
  • [6] On the Interventional Kullback-Leibler Divergence
    Wildberger, Jonas
    Guo, Siyuan
    Bhattacharyya, Arnab
    Schoelkopf, Bernhard
    CONFERENCE ON CAUSAL LEARNING AND REASONING, VOL 213, 2023, 213 : 328 - 349
  • [7] Markov-switching model selection using Kullback-Leibler divergence
    Smith, Aaron
    Naik, Prasad A.
    Tsai, Chih-Ling
    JOURNAL OF ECONOMETRICS, 2006, 134 (02) : 553 - 577
  • [8] Model Fusion with Kullback-Leibler Divergence
    Claici, Sebastian
    Yurochkin, Mikhail
    Ghosh, Soumya
    Solomon, Justin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [9] Kullback-Leibler Divergence Metric Learning
    Ji, Shuyi
    Zhang, Zizhao
    Ying, Shihui
    Wang, Liejun
    Zhao, Xibin
    Gao, Yue
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) : 2047 - 2058
  • [10] Nonparametric Estimation of Kullback-Leibler Divergence
    Zhang, Zhiyi
    Grabchak, Michael
    NEURAL COMPUTATION, 2014, 26 (11) : 2570 - 2593