Strongly correlated zero-bias anomaly in double quantum dot measurements

被引:0
|
作者
Wortis, Rachel [1 ]
Folk, Joshua [2 ,3 ]
Luscher, Silvia [2 ,3 ]
Luyben, Sylvia [1 ]
机构
[1] Trent Univ, Dept Phys & Astron, Peterborough, ON K9L 0G2, Canada
[2] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada
[3] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
HUBBARD MODEL; DISORDER;
D O I
10.1103/PhysRevB.105.245116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Experiments in doped transition metal oxides often show suppression in the single-particle density of states at the Fermi level, but disorder-induced zero-bias anomalies in strongly correlated systems remain poorly understood. Numerical studies of the Anderson-Hubbard model have identified a zero-bias anomaly that is unique to strongly correlated materials, with a width proportional to the intersite hopping amplitude t [S. Chiesa, P. B. Chakraborty, W. E. Pickett, and R. T. Scalettar, Phys. Rev. Lett. 101, 086401 (2008)]. In ensembles of two-site systems, a zero-bias anomaly with the same parameter dependence also occurs, suggesting a similar physical origin R. Wortis and W. A. Atkinson, Phys. Rev. B 82, 073107 (2010)]. We describe how this kineticenergy-driven zero-bias anomaly in ensembles of two-site systems may be seen in a mesoscopic realization based on double quantum dots. Moreover, the double-quantum-dot measurements provide access not only to the ensemble-average density of states but also to the details of the transitions which give rise to the zero-bias anomaly.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The zero-bias anomaly conductance of a strongly correlated dot coupled to Luttinger liquid leads
    Yang, Kai-Hua
    Liu, Bei-Yun
    Wang, Huai-Yu
    He, Xian
    EPL, 2013, 104 (03)
  • [2] Zero-Bias Anomaly in a Nanowire Quantum Dot Coupled to Superconductors
    Lee, Eduardo J. H.
    Jiang, Xiaocheng
    Aguado, Ramon
    Katsaros, Georgios
    Lieber, Charles M.
    De Franceschi, Silvano
    PHYSICAL REVIEW LETTERS, 2012, 109 (18)
  • [3] Zero-bias anomaly in quantum wires
    Sarkozy, S.
    Sfigakis, F.
    Das Gupta, K.
    Farrer, I.
    Ritchie, D. A.
    Jones, G. A. C.
    Pepper, M.
    PHYSICAL REVIEW B, 2009, 79 (16)
  • [4] Universal line shape of the Kondo zero-bias anomaly in a quantum dot
    Kretinin, Andrey V.
    Shtrikman, Hadas
    Mahalu, Diana
    PHYSICAL REVIEW B, 2012, 85 (20):
  • [5] Asymmetric zero-bias anomaly for strongly interacting electrons in one dimension
    Matveev, K. A.
    Furusaki, A.
    Glazman, L. I.
    PHYSICAL REVIEW LETTERS, 2007, 98 (09)
  • [6] Non-Kondo zero-bias anomaly in quantum wires
    Chen, T. -M.
    Graham, A. C.
    Pepper, M.
    Farrer, I.
    Ritchie, D. A.
    PHYSICAL REVIEW B, 2009, 79 (15):
  • [7] Zero-bias conductance anomaly in bilayer quantum Hall systems
    Joglekar, YN
    MacDonald, AH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2002, 16 (20-22): : 2936 - 2939
  • [8] Tunneling zero-bias anomaly in the ultra-quantum limit
    Maslov, DL
    Tsai, SW
    Glazman, LI
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2002, 16 (20-22): : 2968 - 2971
  • [9] Zero-bias anomaly indicating exchange interaction and spin readout in a canted quantum dot spin valve
    Busz, Piotr
    Tomaszewski, Damian
    Martinek, Jan
    PHYSICAL REVIEW B, 2025, 111 (12)
  • [10] Kondo-like zero-bias anomaly in electronic transport through an ultrasmall Si quantum dot
    Rokhinson, LP
    Guo, LJ
    Chou, SY
    Tsui, DC
    PHYSICAL REVIEW B, 1999, 60 (24) : R16319 - R16321