A robust numerical method for pricing American options under Kou's jump-diffusion models based on penalty method

被引:10
|
作者
Gan, Xiaoting [1 ,2 ]
Yang, Ying [3 ]
Zhang, Kun [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[2] Chuxiong Normal Univ, Sch Math & Stat, Chuxiong 675000, Peoples R China
[3] Guilin Univ Elect Technol, Guangxi Key Lab Cryptog & informat Secur, Sch Math & Computat Sci, Guangxi Coll & Univ,Key Lab Data Anal & Computat, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Kou's jump-diffusion model; Partial integro-differential complementarity problem; Fitted finite volume method; Penalty method; FINITE-VOLUME METHOD; VALUATION; SCHEME;
D O I
10.1007/s12190-019-01270-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a novel numerical method for pricing American options under Kou's jump-diffusion model which governed by a partial integro-differential complementarity problem (PIDCP). By using a penalty approach, the PIDCP results in a nonlinear partial integro-differential equation (PIDE). To numerically solve this nonlinear penalized PIDE, a fitted finite volume method is introduced for the spatial discretization and the Backward Euler and Crank-Nicolson schemes for the time discretization. We show that these schemes are consistent, stable and monotone, hence convergence to the solution of continuous problem. Numerical experiments are performed to verify the effectiveness of this new method.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [21] DG Method for Pricing European Options under Merton Jump-Diffusion Model
    Hozman, Jiri
    Tichy, Tomas
    Vlasak, Miloslav
    APPLICATIONS OF MATHEMATICS, 2019, 64 (05) : 501 - 530
  • [22] Pricing Exotic Option Under Jump-Diffusion Models by the Quadrature Method
    Zhang, Jin-Yu
    Wu, Wen-Bo
    Li, Yong
    Lou, Zhu-Sheng
    COMPUTATIONAL ECONOMICS, 2021, 58 (03) : 867 - 884
  • [23] Pricing Exotic Option Under Jump-Diffusion Models by the Quadrature Method
    Jin-Yu Zhang
    Wen-Bo Wu
    Yong Li
    Zhu-Sheng Lou
    Computational Economics, 2021, 58 : 867 - 884
  • [24] An Implicit Double Discretization Method for Pricing Options under Metron's Jump-diffusion Model
    Dou Q.
    Yin J.
    Gan X.
    Yin, Junfeng (yinjf@tongji.edu.cn), 1600, Science Press (45): : 302 - 308
  • [25] Pricing Cliquet options in jump-diffusion models
    Yan, HF
    Yang, JQ
    Liu, LM
    STOCHASTIC MODELS, 2005, 21 (04) : 875 - 884
  • [26] AMERICAN OPTIONS AND JUMP-DIFFUSION MODELS
    ZHANG, XL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (09): : 857 - 862
  • [27] A front-fixing finite element method for pricing American options under regime-switching jump-diffusion models
    Heidari, S.
    Azari, H.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 3691 - 3707
  • [28] A front-fixing finite element method for pricing American options under regime-switching jump-diffusion models
    S. Heidari
    H. Azari
    Computational and Applied Mathematics, 2018, 37 : 3691 - 3707
  • [29] A penalty method for American options with jump diffusion processes
    d'Halluin, Y
    Forsyth, PA
    Labahn, G
    NUMERISCHE MATHEMATIK, 2004, 97 (02) : 321 - 352
  • [30] A high-order front-tracking finite difference method for pricing American options under jump-diffusion models
    Toivanen, Jari
    JOURNAL OF COMPUTATIONAL FINANCE, 2010, 13 (03) : 61 - 79