A robust numerical method for pricing American options under Kou's jump-diffusion models based on penalty method

被引:10
|
作者
Gan, Xiaoting [1 ,2 ]
Yang, Ying [3 ]
Zhang, Kun [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[2] Chuxiong Normal Univ, Sch Math & Stat, Chuxiong 675000, Peoples R China
[3] Guilin Univ Elect Technol, Guangxi Key Lab Cryptog & informat Secur, Sch Math & Computat Sci, Guangxi Coll & Univ,Key Lab Data Anal & Computat, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Kou's jump-diffusion model; Partial integro-differential complementarity problem; Fitted finite volume method; Penalty method; FINITE-VOLUME METHOD; VALUATION; SCHEME;
D O I
10.1007/s12190-019-01270-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a novel numerical method for pricing American options under Kou's jump-diffusion model which governed by a partial integro-differential complementarity problem (PIDCP). By using a penalty approach, the PIDCP results in a nonlinear partial integro-differential equation (PIDE). To numerically solve this nonlinear penalized PIDE, a fitted finite volume method is introduced for the spatial discretization and the Backward Euler and Crank-Nicolson schemes for the time discretization. We show that these schemes are consistent, stable and monotone, hence convergence to the solution of continuous problem. Numerical experiments are performed to verify the effectiveness of this new method.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [41] Efficient numerical valuation of European options under the two-asset Kou jump-diffusion model
    In'T Hout, Karel J.
    Lamotte, Pieter
    JOURNAL OF COMPUTATIONAL FINANCE, 2023, 26 (04) : 101 - 137
  • [42] Pricing American options under jump-diffusion models using local weak form meshless techniques
    Rad, Jamal Amani
    Parand, Kourosh
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (08) : 1694 - 1718
  • [43] RBF-PU method for pricing options under the jump-diffusion model with local volatility
    Mollapourasl, Reza
    Fereshtian, Ali
    Li, Hengguang
    Lu, Xun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 337 : 98 - 118
  • [44] Second Order Accurate IMEX Methods for Option Pricing Under Merton and Kou Jump-Diffusion Models
    Mohan K. Kadalbajoo
    Lok Pati Tripathi
    Alpesh Kumar
    Journal of Scientific Computing, 2015, 65 : 979 - 1024
  • [45] Second Order Accurate IMEX Methods for Option Pricing Under Merton and Kou Jump-Diffusion Models
    Kadalbajoo, Mohan K.
    Tripathi, Lok Pati
    Kumar, Alpesh
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (03) : 979 - 1024
  • [46] An efficient variable step-size method for options pricing under jump-diffusion models with nonsmooth payoff function
    Wang, Wansheng
    Mao, Mengli
    Wang, Zheng
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (03): : 913 - 938
  • [47] Pricing American Options under Levy Jump Models: A Multidimensional Transform Method
    Beliaeva, Natalia
    Chen, Ye
    Nawalkha, Sanjay
    Sullivan, Michael
    JOURNAL OF DERIVATIVES, 2023, 31 (02): : 9 - 35
  • [48] A numerical approach to pricing exchange options under stochastic volatility and jump-diffusion dynamics
    Garces, Len Patrick Dominic M.
    Cheang, Gerald H. L.
    QUANTITATIVE FINANCE, 2021, 21 (12) : 2025 - 2054
  • [49] PRICING BASKET AND ASIAN OPTIONS UNDER THE JUMP-DIFFUSION PROCESS
    Bae, Kwangil
    Kang, Jangkoo
    Kim, Hwa-Sung
    JOURNAL OF FUTURES MARKETS, 2011, 31 (09) : 830 - 854
  • [50] The pricing of foreign currency options under jump-diffusion processes
    Ahn, Chang Mo
    Cho, D. Chinhyung
    Park, Keehwan
    JOURNAL OF FUTURES MARKETS, 2007, 27 (07) : 669 - 695