A penalty method for American options with jump diffusion processes

被引:141
|
作者
d'Halluin, Y [1 ]
Forsyth, PA [1 ]
Labahn, G [1 ]
机构
[1] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1J, Canada
关键词
D O I
10.1007/s00211-003-0511-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fair price for an American option where the underlying asset follows a jump diffusion process can be formulated as a partial integral differential linear complementarity problem. We develop an implicit discretization method for pricing such American options. The jump diffusion correlation integral term is computed using an iterative method coupled with an FFT while the American constraint is imposed by using a penalty method. We derive sufficient conditions for global convergence of the discrete penalized equations at each timestep. Finally, we present numerical tests which illustrate such convergence.
引用
收藏
页码:321 / 352
页数:32
相关论文
共 50 条
  • [1] A penalty method for American options with jump diffusion processes
    Y. d’Halluin
    P.A. Forsyth
    G. Labahn
    Numerische Mathematik, 2004, 97 : 321 - 352
  • [2] A POWER PENALTY APPROACH TO AMERICAN OPTION PRICING WITH JUMP DIFFUSION PROCESSES
    Zhang, Kai
    Yang, Xiaoqi
    Teo, Kok Lay
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2008, 4 (04) : 783 - 799
  • [3] Analytical valuation of American options on jump-diffusion processes
    Gukhal, CR
    MATHEMATICAL FINANCE, 2001, 11 (01) : 97 - 115
  • [4] A robust numerical method for pricing American options under Kou’s jump-diffusion models based on penalty method
    Xiaoting Gan
    Ying Yang
    Kun Zhang
    Journal of Applied Mathematics and Computing, 2020, 62 : 1 - 21
  • [5] A robust numerical method for pricing American options under Kou's jump-diffusion models based on penalty method
    Gan, Xiaoting
    Yang, Ying
    Zhang, Kun
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) : 1 - 21
  • [6] Inexact arithmetic considerations for direct control and penalty methods: American options under jump diffusion
    Huang, Y.
    Forsyth, P. A.
    Labahn, G.
    APPLIED NUMERICAL MATHEMATICS, 2013, 72 : 33 - 51
  • [7] PRICING VULNERABLE AMERICAN PUT OPTIONS UNDER JUMP-DIFFUSION PROCESSES
    Wang, Guanying
    Wang, Xingchun
    Liu, Zhongyi
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2017, 31 (02) : 121 - 138
  • [8] Fitted Finite Volume Method for Pricing American Options under Regime-Switching Jump-Diffusion Models Based on Penalty Method
    Gan, Xiaoting
    Yin, Junfeng
    Li, Rui
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (03) : 748 - 773
  • [9] AMERICAN OPTIONS AND JUMP-DIFFUSION MODELS
    ZHANG, XL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (09): : 857 - 862
  • [10] Pricing options under jump diffusion processes with fitted finite volume method
    Zhang, Kai
    Wang, Song
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 201 (1-2) : 398 - 413