A robust numerical method for pricing American options under Kou's jump-diffusion models based on penalty method

被引:10
|
作者
Gan, Xiaoting [1 ,2 ]
Yang, Ying [3 ]
Zhang, Kun [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[2] Chuxiong Normal Univ, Sch Math & Stat, Chuxiong 675000, Peoples R China
[3] Guilin Univ Elect Technol, Guangxi Key Lab Cryptog & informat Secur, Sch Math & Computat Sci, Guangxi Coll & Univ,Key Lab Data Anal & Computat, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Kou's jump-diffusion model; Partial integro-differential complementarity problem; Fitted finite volume method; Penalty method; FINITE-VOLUME METHOD; VALUATION; SCHEME;
D O I
10.1007/s12190-019-01270-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a novel numerical method for pricing American options under Kou's jump-diffusion model which governed by a partial integro-differential complementarity problem (PIDCP). By using a penalty approach, the PIDCP results in a nonlinear partial integro-differential equation (PIDE). To numerically solve this nonlinear penalized PIDE, a fitted finite volume method is introduced for the spatial discretization and the Backward Euler and Crank-Nicolson schemes for the time discretization. We show that these schemes are consistent, stable and monotone, hence convergence to the solution of continuous problem. Numerical experiments are performed to verify the effectiveness of this new method.
引用
下载
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] A robust numerical method for pricing American options under Kou’s jump-diffusion models based on penalty method
    Xiaoting Gan
    Ying Yang
    Kun Zhang
    Journal of Applied Mathematics and Computing, 2020, 62 : 1 - 21
  • [2] An iterative method for pricing American options under jump-diffusion models
    Salmi, Santtu
    Toivanen, Jari
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (07) : 821 - 831
  • [3] Fitted Finite Volume Method for Pricing American Options under Regime-Switching Jump-Diffusion Models Based on Penalty Method
    Gan, Xiaoting
    Yin, Junfeng
    Li, Rui
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (03) : 748 - 773
  • [4] Numerical valuation of European and American options under Kou's jump-diffusion model
    Toivanen, Jari
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (04): : 1949 - 1970
  • [5] Finite Volume Method for Pricing European and American Options under Jump-Diffusion Models
    Gan, Xiao-Ting
    Yin, Jun-Feng
    Guo, Yun-Xiang
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (02) : 227 - 247
  • [6] An RBF-FD method for pricing American options under jump-diffusion models
    Haghi, Majid
    Mollapourasl, Reza
    Vanmaele, Michele
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (10) : 2434 - 2459
  • [7] A Finite Difference Scheme for Pricing American Put Options under Kou's Jump-Diffusion Model
    Huang, Jian
    Cen, Zhongdi
    Le, Anbo
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [8] IMEX-MCNAB Scheme for Pricing European Options under Kou's Jump-Diffusion Models
    Jia, Xiangyu
    Xu, Zuoliang
    PROCEEDINGS OF THE 2018 4TH INTERNATIONAL CONFERENCE ON EDUCATION TECHNOLOGY, MANAGEMENT AND HUMANITIES SCIENCE (ETMHS 2018), 2018, 194 : 545 - 552
  • [9] Pricing American Options by Willow Tree Method Under Jump-Diffusion Process
    Xu, Wei
    Yin, Yufang
    JOURNAL OF DERIVATIVES, 2014, 22 (01): : 46 - 56
  • [10] A Robust Numerical Scheme For Pricing American Options Under Regime Switching Based On Penalty Method
    Zhang, K.
    Teo, K. L.
    Swartz, M.
    COMPUTATIONAL ECONOMICS, 2014, 43 (04) : 463 - 483