The dimension formula for the Lorenz attractor

被引:20
|
作者
Leonov, G. A. [2 ]
Pogromsky, A. Yu. [1 ]
Starkov, K. E. [3 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[2] St Petersburg State Univ, Fac Math & Mech, St Petersburg 198504, Russia
[3] CITEDI IPN, Tijuana 22510, BC, Mexico
关键词
Lorenz system; Lyapunov dimension;
D O I
10.1016/j.physleta.2011.01.034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An analytical formula for the Lyapunov dimension of the Lorenz attractor is presented under assumption that all the equilibria are unstable. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1179 / 1182
页数:4
相关论文
共 50 条
  • [31] A Verified ODE Solver and the Lorenz Attractor
    Fabian Immler
    Journal of Automated Reasoning, 2018, 61 : 73 - 111
  • [32] LOCALIZING THE ATTRACTOR OF THE LORENZ-SYSTEM
    LEONOV, GA
    BUNIN, AI
    KOKSCH, N
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (12): : 649 - 656
  • [33] A Verified ODE Solver and the Lorenz Attractor
    Immler, Fabian
    JOURNAL OF AUTOMATED REASONING, 2018, 61 (1-4) : 73 - 111
  • [34] Unstable periodic orbits in the Lorenz attractor
    Boghosian, Bruce M.
    Brown, Aaron
    Laett, Jonas
    Tang, Hui
    Fazendeiro, Luis M.
    Coveney, Peter V.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1944): : 2345 - 2353
  • [35] PERIODIC ORBIT ANALYSIS OF THE LORENZ ATTRACTOR
    ECKHARDT, B
    OTT, G
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1994, 93 (02): : 259 - 266
  • [36] The random attractor of the stochastic Lorenz system
    B. Schmallfuß
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1997, 48 : 951 - 975
  • [37] Analogs on the Lorenz Attractor and Ensemble Spread
    Atencia, Aitor
    Zawadzki, Isztar
    MONTHLY WEATHER REVIEW, 2017, 145 (04) : 1381 - 1400
  • [38] Generalized Fibonacci shifts in the Lorenz attractor
    San Martin, Bernardo
    Sirvent, Victor F.
    CHAOS SOLITONS & FRACTALS, 2023, 169
  • [39] The Multidimensional Lorenz Attractor is a Homoclinic Class
    Bautista, S.
    Rojas, J. D.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2015, 14 (01) : 1 - 9
  • [40] The Multidimensional Lorenz Attractor is a Homoclinic Class
    S. Bautista
    J. D. Rojas
    Qualitative Theory of Dynamical Systems, 2015, 14 : 1 - 9