The dimension formula for the Lorenz attractor

被引:20
|
作者
Leonov, G. A. [2 ]
Pogromsky, A. Yu. [1 ]
Starkov, K. E. [3 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[2] St Petersburg State Univ, Fac Math & Mech, St Petersburg 198504, Russia
[3] CITEDI IPN, Tijuana 22510, BC, Mexico
关键词
Lorenz system; Lyapunov dimension;
D O I
10.1016/j.physleta.2011.01.034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An analytical formula for the Lyapunov dimension of the Lorenz attractor is presented under assumption that all the equilibria are unstable. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1179 / 1182
页数:4
相关论文
共 50 条
  • [41] A COMPUTATION OF THE LIMIT CAPACITY OF THE LORENZ ATTRACTOR
    MCGUINNESS, MJ
    PHYSICA D, 1985, 16 (02): : 265 - 275
  • [42] The random attractor of the stochastic Lorenz system
    Schmalfuss, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (06): : 951 - 975
  • [43] Doubling the Lorenz Attractor via Coupling
    Fen, Mehmet Onur
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2023, 12 (02) : 273 - 284
  • [44] ON THE DIMENSION OF SOLAR ATTRACTOR
    OSTRYAKOV, VM
    USOSKIN, IG
    SOLAR PHYSICS, 1990, 127 (02) : 405 - 412
  • [45] Integrals of motion and the shape of the attractor for the Lorenz model
    Giacomini, H.
    Neukirch, S.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 227 (5-6): : 309 - 318
  • [46] Chaos in Lebanese GDP: The Lorenz Attractor Approach
    Verne, Jean-Francois
    Verne, Carole Doueiry
    ECONOMICS BULLETIN, 2019, 39 (03): : 1958 - +
  • [47] A hyperchaotic Lorenz attractor and its circuit implementation
    Wang Guang-Yi
    Zheng Yan
    Liu Jing-Biao
    ACTA PHYSICA SINICA, 2007, 56 (06) : 3113 - 3120
  • [48] On a Class of Nonlocal Bifurcation Concerning the Lorenz Attractor
    Qi Dongwen Institute of Mathematics Academia Sinica Beijing
    Acta Mathematica Sinica,English Series, 1996, (01) : 54 - 70
  • [49] Resonances in a Chaotic Attractor Crisis of the Lorenz Flow
    Alexis Tantet
    Valerio Lucarini
    Henk A. Dijkstra
    Journal of Statistical Physics, 2018, 170 : 584 - 616
  • [50] Homoclinic bifurcation to a transitive attractor of Lorenz type
    Robinson, Clark
    NONLINEARITY, 1989, 2 (04) : 495 - 518