Generalized Fibonacci shifts in the Lorenz attractor

被引:0
|
作者
San Martin, Bernardo [1 ]
Sirvent, Victor F. [1 ]
机构
[1] Univ Catolica Norte, Dept Matemat, Casilla 1280, Antofagasta, Chile
关键词
Lorenz attractor; Lorenz map; Symbolicdynamics; Fibonacci shift; k-bonacci shift; Topological entropy; HAUSDORFF DIMENSION;
D O I
10.1016/j.chaos.2023.113239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we deal with symmetric Lorenz attractors having a homoclinic loop that exhibits a well ordered orbit. We show the symmetry implies a very regular behaviour on the dynamic in the topological and metric sense. Let ([-1, 1], f) be the one-dimensional reduction Lorenz map satisfying a well ordered orbit and ([-1, 0], (f) over tilde) be the quotient map, given by the equivalence relation x similar to -x, the dynamic of (f) over tilde is described explicitly as a subshift of finite type which generalizes the Fibonacci shifts and this fact is used to compute topological entropy of f. Moreover we show that in general ([-1, 0], (f) over tilde) is related to a factor of the k-bonacci shift. In particular we found that the 1-dimensional Lorenz map replicates an interesting duplicating behaviour of the k-bonacci shift found in Sirvent (1996, 2011).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The Lorenz attractor is mixing
    Luzzatto, S
    Melbourne, I
    Paccaut, F
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (02) : 393 - 401
  • [2] The Lorenz attractor exists
    Tucker, W
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12): : 1197 - 1202
  • [3] ENSEMBLES OF THE LORENZ ATTRACTOR
    ROTHMAYER, AP
    BLACK, DW
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 441 (1912): : 291 - 312
  • [4] Simplifications of the Lorenz Attractor
    Sprott, J. C.
    NONLINEAR DYNAMICS PSYCHOLOGY AND LIFE SCIENCES, 2009, 13 (03) : 271 - 278
  • [5] The Lorenz Attractor is Mixing
    Stefano Luzzatto
    Ian Melbourne
    Frederic Paccaut
    Communications in Mathematical Physics, 2005, 260 : 393 - 401
  • [6] The Lorenz attractor exists
    Ian Stewart
    Nature, 2000, 406 : 948 - 949
  • [7] Dynamics analysis and Hamilton energy control of a generalized Lorenz system with hidden attractor
    An Xin-lei
    Zhang Li
    NONLINEAR DYNAMICS, 2018, 94 (04) : 2995 - 3010
  • [8] Dynamics analysis and Hamilton energy control of a generalized Lorenz system with hidden attractor
    An Xin-lei
    Zhang Li
    Nonlinear Dynamics, 2018, 94 : 2995 - 3010
  • [9] THE FRACTAL DIMENSION OF THE LORENZ ATTRACTOR
    MCGUINNESS, MJ
    PHYSICS LETTERS A, 1983, 99 (01) : 5 - 9
  • [10] On the shape and dimension of the Lorenz attractor
    Doering, CR
    Gibbon, JD
    DYNAMICS AND STABILITY OF SYSTEMS, 1995, 10 (03): : 255 - 268