Generalized Fibonacci shifts in the Lorenz attractor

被引:0
|
作者
San Martin, Bernardo [1 ]
Sirvent, Victor F. [1 ]
机构
[1] Univ Catolica Norte, Dept Matemat, Casilla 1280, Antofagasta, Chile
关键词
Lorenz attractor; Lorenz map; Symbolicdynamics; Fibonacci shift; k-bonacci shift; Topological entropy; HAUSDORFF DIMENSION;
D O I
10.1016/j.chaos.2023.113239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we deal with symmetric Lorenz attractors having a homoclinic loop that exhibits a well ordered orbit. We show the symmetry implies a very regular behaviour on the dynamic in the topological and metric sense. Let ([-1, 1], f) be the one-dimensional reduction Lorenz map satisfying a well ordered orbit and ([-1, 0], (f) over tilde) be the quotient map, given by the equivalence relation x similar to -x, the dynamic of (f) over tilde is described explicitly as a subshift of finite type which generalizes the Fibonacci shifts and this fact is used to compute topological entropy of f. Moreover we show that in general ([-1, 0], (f) over tilde) is related to a factor of the k-bonacci shift. In particular we found that the 1-dimensional Lorenz map replicates an interesting duplicating behaviour of the k-bonacci shift found in Sirvent (1996, 2011).
引用
收藏
页数:11
相关论文
共 50 条
  • [31] The random attractor of the stochastic Lorenz system
    B. Schmallfuß
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1997, 48 : 951 - 975
  • [32] Analogs on the Lorenz Attractor and Ensemble Spread
    Atencia, Aitor
    Zawadzki, Isztar
    MONTHLY WEATHER REVIEW, 2017, 145 (04) : 1381 - 1400
  • [33] The Multidimensional Lorenz Attractor is a Homoclinic Class
    Bautista, S.
    Rojas, J. D.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2015, 14 (01) : 1 - 9
  • [34] The Multidimensional Lorenz Attractor is a Homoclinic Class
    S. Bautista
    J. D. Rojas
    Qualitative Theory of Dynamical Systems, 2015, 14 : 1 - 9
  • [35] A COMPUTATION OF THE LIMIT CAPACITY OF THE LORENZ ATTRACTOR
    MCGUINNESS, MJ
    PHYSICA D, 1985, 16 (02): : 265 - 275
  • [36] The random attractor of the stochastic Lorenz system
    Schmalfuss, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (06): : 951 - 975
  • [37] Doubling the Lorenz Attractor via Coupling
    Fen, Mehmet Onur
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2023, 12 (02) : 273 - 284
  • [38] Generalized Fibonacci functions and sequences of generalized Fibonacci functions
    Lee, GY
    Kim, JS
    Cho, TH
    FIBONACCI QUARTERLY, 2003, 41 (02): : 108 - 121
  • [39] Integrals of motion and the shape of the attractor for the Lorenz model
    Giacomini, H.
    Neukirch, S.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 227 (5-6): : 309 - 318
  • [40] Chaos in Lebanese GDP: The Lorenz Attractor Approach
    Verne, Jean-Francois
    Verne, Carole Doueiry
    ECONOMICS BULLETIN, 2019, 39 (03): : 1958 - +