Generalized Fibonacci shifts in the Lorenz attractor

被引:0
|
作者
San Martin, Bernardo [1 ]
Sirvent, Victor F. [1 ]
机构
[1] Univ Catolica Norte, Dept Matemat, Casilla 1280, Antofagasta, Chile
关键词
Lorenz attractor; Lorenz map; Symbolicdynamics; Fibonacci shift; k-bonacci shift; Topological entropy; HAUSDORFF DIMENSION;
D O I
10.1016/j.chaos.2023.113239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we deal with symmetric Lorenz attractors having a homoclinic loop that exhibits a well ordered orbit. We show the symmetry implies a very regular behaviour on the dynamic in the topological and metric sense. Let ([-1, 1], f) be the one-dimensional reduction Lorenz map satisfying a well ordered orbit and ([-1, 0], (f) over tilde) be the quotient map, given by the equivalence relation x similar to -x, the dynamic of (f) over tilde is described explicitly as a subshift of finite type which generalizes the Fibonacci shifts and this fact is used to compute topological entropy of f. Moreover we show that in general ([-1, 0], (f) over tilde) is related to a factor of the k-bonacci shift. In particular we found that the 1-dimensional Lorenz map replicates an interesting duplicating behaviour of the k-bonacci shift found in Sirvent (1996, 2011).
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A hyperchaotic Lorenz attractor and its circuit implementation
    Wang Guang-Yi
    Zheng Yan
    Liu Jing-Biao
    ACTA PHYSICA SINICA, 2007, 56 (06) : 3113 - 3120
  • [42] On a Class of Nonlocal Bifurcation Concerning the Lorenz Attractor
    Qi Dongwen Institute of Mathematics Academia Sinica Beijing
    Acta Mathematica Sinica,English Series, 1996, (01) : 54 - 70
  • [43] Resonances in a Chaotic Attractor Crisis of the Lorenz Flow
    Alexis Tantet
    Valerio Lucarini
    Henk A. Dijkstra
    Journal of Statistical Physics, 2018, 170 : 584 - 616
  • [44] Homoclinic bifurcation to a transitive attractor of Lorenz type
    Robinson, Clark
    NONLINEARITY, 1989, 2 (04) : 495 - 518
  • [45] QUANTUM FLUCTUATIONS AND THE LORENZ STRANGE ATTRACTOR - COMMENT
    GRAHAM, R
    PHYSICAL REVIEW LETTERS, 1984, 53 (15) : 1506 - 1506
  • [46] Attractor selection in a modulated laser and in the Lorenz circuit
    Meucci, Riccardo
    Salvadori, Francesco
    Al Naimee, Kais
    Brugioni, Stefano
    Goswami, Binoy K.
    Boccaletti, Stefano
    Arecchi, F. Tito
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1864): : 475 - 486
  • [47] DIRECT SOLUTION FOR THE POWER SPECTRUM OF THE LORENZ ATTRACTOR
    ANDREWS, PL
    WALTZ, RE
    PHYSICS OF FLUIDS, 1988, 31 (11) : 3168 - 3170
  • [48] On a Class of Nonlocal Bifurcation Concerning the Lorenz Attractor
    Qi Dongwen Institute of Mathematics Academia Sinica Beijing China
    Acta Mathematica Sinica(New Series), 1996, 12 (01) : 54 - 70
  • [49] Integrals of motion and the shape of the attractor for the Lorenz model
    Giacomini, H
    Neukirch, S
    PHYSICS LETTERS A, 1997, 227 (5-6) : 309 - 318
  • [50] QUANTUM FLUCTUATIONS AND THE LORENZ STRANGE ATTRACTOR - REPLY
    ELGIN, JN
    SARKAR, S
    PHYSICAL REVIEW LETTERS, 1984, 53 (15) : 1507 - 1507