Generalized Fibonacci shifts in the Lorenz attractor

被引:0
|
作者
San Martin, Bernardo [1 ]
Sirvent, Victor F. [1 ]
机构
[1] Univ Catolica Norte, Dept Matemat, Casilla 1280, Antofagasta, Chile
关键词
Lorenz attractor; Lorenz map; Symbolicdynamics; Fibonacci shift; k-bonacci shift; Topological entropy; HAUSDORFF DIMENSION;
D O I
10.1016/j.chaos.2023.113239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we deal with symmetric Lorenz attractors having a homoclinic loop that exhibits a well ordered orbit. We show the symmetry implies a very regular behaviour on the dynamic in the topological and metric sense. Let ([-1, 1], f) be the one-dimensional reduction Lorenz map satisfying a well ordered orbit and ([-1, 0], (f) over tilde) be the quotient map, given by the equivalence relation x similar to -x, the dynamic of (f) over tilde is described explicitly as a subshift of finite type which generalizes the Fibonacci shifts and this fact is used to compute topological entropy of f. Moreover we show that in general ([-1, 0], (f) over tilde) is related to a factor of the k-bonacci shift. In particular we found that the 1-dimensional Lorenz map replicates an interesting duplicating behaviour of the k-bonacci shift found in Sirvent (1996, 2011).
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A new view of the Lorenz attractor
    Magnitskii, NA
    Sidorov, SV
    DIFFERENTIAL EQUATIONS, 2001, 37 (11) : 1568 - 1579
  • [22] EFFECTIVE NOISE OF THE LORENZ ATTRACTOR
    NICOLIS, C
    NICOLIS, G
    PHYSICAL REVIEW A, 1986, 34 (03): : 2384 - 2390
  • [23] ON THE MULTIFRACTAL CHARACTER OF THE LORENZ ATTRACTOR
    DOMINGUEZTENREIRO, R
    ROY, LJ
    MARTINEZ, VJ
    PROGRESS OF THEORETICAL PHYSICS, 1992, 87 (05): : 1107 - 1118
  • [24] Complex Singularities and the Lorenz Attractor
    Viswanath, Divakar
    Sahutoglu, Soenmez
    SIAM REVIEW, 2010, 52 (02) : 294 - 314
  • [25] Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model
    Ovsyannikov, I. I.
    Turaev, D., V
    NONLINEARITY, 2017, 30 (01) : 115 - 137
  • [26] A Verified ODE Solver and the Lorenz Attractor
    Fabian Immler
    Journal of Automated Reasoning, 2018, 61 : 73 - 111
  • [27] LOCALIZING THE ATTRACTOR OF THE LORENZ-SYSTEM
    LEONOV, GA
    BUNIN, AI
    KOKSCH, N
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (12): : 649 - 656
  • [28] A Verified ODE Solver and the Lorenz Attractor
    Immler, Fabian
    JOURNAL OF AUTOMATED REASONING, 2018, 61 (1-4) : 73 - 111
  • [29] Unstable periodic orbits in the Lorenz attractor
    Boghosian, Bruce M.
    Brown, Aaron
    Laett, Jonas
    Tang, Hui
    Fazendeiro, Luis M.
    Coveney, Peter V.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1944): : 2345 - 2353
  • [30] PERIODIC ORBIT ANALYSIS OF THE LORENZ ATTRACTOR
    ECKHARDT, B
    OTT, G
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1994, 93 (02): : 259 - 266