Trajectory Planning for Autonomous Vehicles Using Hierarchical Reinforcement Learning

被引:24
|
作者
Ben Naveed, Kaleb [1 ]
Qiao, Zhiqian [2 ]
Dolan, John M. [3 ]
机构
[1] Hong Kong Polytech Univ, Student Elect & Informat Engn, Hong Kong, Peoples R China
[2] Carnegie Mellon Univ, Elect & Comp Engn, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Robot Inst, Pittsburgh, PA 15213 USA
关键词
Trajectory Planning; Hierarchical Deep Reinforcement Learning; Double Deep Q-Learning; PID controller;
D O I
10.1109/ITSC48978.2021.9564634
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Planning safe trajectories under uncertain and dynamic conditions makes the autonomous driving problem significantly complex. Current heuristic-based algorithms such as the slot-based method rely heavily on hand-engineered parameters and are restricted to specific scenarios. Supervised learning methods such as Imitation Learning lack generalization and safety guarantees. To address these problems and to ensure a robust framework, we propose a Robust-Hierarchical Reinforcement Learning (HRL) framework for learning autonomous driving policies. We adapt a state-of-the-art algorithm, Hierarchical Double Deep Q-learning (h-DDQN), and make the framework robust by (1) constituting the decision of selecting driving maneuver as a high-level option; (2) for the lower-level controller, outputting waypoint trajectories to track with a Proportional-Integral-Derivative (PID) controller instead of direct acceleration/steering actions; and (3) using a Long-Short-Term-Memory (LSTM) layer in the network to alleviate the effects of observation noise and dynamic driving behaviors. Moreover, to improve the sample efficiency, we use Hybrid Reward Mechanism and Reward-Driven Exploration. Results from the high-fidelity CARLA simulator while simulating different interactive lane change scenarios indicate that the proposed framework reduces convergence time, generates smoother trajectories, and can better handle dynamic surroundings and noisy observations as compared to other traditional RL approaches.
引用
下载
收藏
页码:601 / 606
页数:6
相关论文
共 50 条
  • [21] Hybrid Trajectory Planning for Autonomous Vehicles using Neural Networks
    Hegedus, Ferenc
    Becsi, Tamas
    Aradi, Szilard
    Galdi, Gyorgy
    2018 18TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI), 2018, : 25 - 30
  • [22] Device Placement for Autonomous Vehicles using Reinforcement Learning
    Zheng, Jinkai
    Mu, Phil K.
    Man, Ziqian
    Luan, Tom H.
    Cai, Lin X.
    Shan, Hangguan
    IEEE CONGRESS ON CYBERMATICS / 2021 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS (ITHINGS) / IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) / IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) / IEEE SMART DATA (SMARTDATA), 2021, : 190 - 196
  • [23] Hierarchical Motion Planning and Tracking for Autonomous Vehicles Using Global Heuristic Based Potential Field and Reinforcement Learning Based Predictive Control
    Du, Guodong
    Zou, Yuan
    Zhang, Xudong
    Li, Zirui
    Liu, Qi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8304 - 8323
  • [24] Safe Reinforcement Learning With Stability Guarantee for Motion Planning of Autonomous Vehicles
    Zhang, Lixian
    Zhang, Ruixian
    Wu, Tong
    Weng, Rui
    Han, Minghao
    Zhao, Ye
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (12) : 5435 - 5444
  • [25] Hierarchical User-Driven Trajectory Planning and Charging Scheduling of Autonomous Electric Vehicles
    Mansour Saatloo, Amin
    Mehrabi, Abbas
    Marzband, Mousa
    Aslam, Nauman
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2023, 9 (01) : 1736 - 1749
  • [26] Adaptive Formation Motion Planning and Control of Autonomous Underwater Vehicles Using Deep Reinforcement Learning
    Hadi, Behnaz
    Khosravi, Alireza
    Sarhadi, Pouria
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2024, 49 (01) : 311 - 328
  • [27] An ethical trajectory planning algorithm for autonomous vehicles
    Maximilian Geisslinger
    Franziska Poszler
    Markus Lienkamp
    Nature Machine Intelligence, 2023, 5 : 137 - 144
  • [28] An ethical trajectory planning algorithm for autonomous vehicles
    Geisslinger, Maximilian
    Poszler, Franziska
    Lienkamp, Markus
    NATURE MACHINE INTELLIGENCE, 2023, 5 (02) : 137 - +
  • [29] Parallel Parking Trajectory Planning for Autonomous Vehicles
    Hu J.
    Zhang M.
    Xu W.
    Chen R.
    Zhong X.
    Zhu L.
    Qiche Gongcheng/Automotive Engineering, 2022, 44 (03): : 330 - 339
  • [30] Path planning of autonomous UAVs using reinforcement learning
    Chronis, Christos
    Anagnostopoulos, Georgios
    Politi, Elena
    Garyfallou, Antonios
    Varlamis, Iraklis
    Dimitrakopoulos, George
    12TH EASN INTERNATIONAL CONFERENCE ON "INNOVATION IN AVIATION & SPACE FOR OPENING NEW HORIZONS", 2023, 2526