Bounded Collection of Feynman Integral Calabi-Yau Geometries

被引:82
|
作者
Bourjaily, Jacob L. [1 ,2 ]
McLeod, Andrew J. [1 ,2 ]
von Hippel, Matt [1 ,2 ]
Wilhelm, Matthias [1 ,2 ]
机构
[1] Univ Copenhagen, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
基金
欧洲研究理事会;
关键词
HODGE STRUCTURE; DIAGRAMS; SERIES; HYPERSURFACES; SPACE; GRAPH;
D O I
10.1103/PhysRevLett.122.031601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. We prove that massless Feynman integrals in four dimensions have a rigidity bounded by 2(L - 1) at L loops provided they are in the class that we call marginal: those with (L + 1)D/2 propagators in (even) D dimensions. We show that marginal Feynman integrals in D dimensions generically involve Calabi-Yau geometries, and we give examples of finite four-dimensional Feynman integrals in massless phi(4) theory that saturate our predicted bound in rigidity at all loop orders.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Calabi-Yau black holes
    Shmakova, M
    PHYSICAL REVIEW D, 1997, 56 (02) : R540 - R544
  • [42] Acyclic Calabi-Yau categories
    Keller, Bernhard
    Reiten, Idun
    COMPOSITIO MATHEMATICA, 2008, 144 (05) : 1332 - 1348
  • [43] Quantum periods and TBA-like equations for a class of Calabi-Yau geometries
    Du, Bao-ning
    Huang, Min-xin
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)
  • [44] Deforming Calabi-Yau threefolds
    Gross, M
    MATHEMATISCHE ANNALEN, 1997, 308 (02) : 187 - 220
  • [45] Emergent Calabi-Yau Geometry
    Ooguri, Hirosi
    Yamazaki, Masahito
    PHYSICAL REVIEW LETTERS, 2009, 102 (16)
  • [46] Convergence of Calabi-Yau manifolds
    Ruan, Wei-Dong
    Zhang, Yuguang
    ADVANCES IN MATHEMATICS, 2011, 228 (03) : 1543 - 1589
  • [47] Patterns in Calabi-Yau Distributions
    He, Yang-Hui
    Jejjala, Vishnu
    Pontiggia, Luca
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (02) : 477 - 524
  • [48] Deforming Calabi-Yau threefolds
    Mark Gross
    Mathematische Annalen, 1997, 308 : 187 - 220
  • [49] Instantons on Calabi-Yau cones
    Sperling, Marcus
    NUCLEAR PHYSICS B, 2015, 901 : 354 - 381
  • [50] Relative Calabi-Yau structures
    Brav, Christopher
    Dyckerhoff, Tobias
    COMPOSITIO MATHEMATICA, 2019, 155 (02) : 372 - 412