Bounded Collection of Feynman Integral Calabi-Yau Geometries

被引:82
|
作者
Bourjaily, Jacob L. [1 ,2 ]
McLeod, Andrew J. [1 ,2 ]
von Hippel, Matt [1 ,2 ]
Wilhelm, Matthias [1 ,2 ]
机构
[1] Univ Copenhagen, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
基金
欧洲研究理事会;
关键词
HODGE STRUCTURE; DIAGRAMS; SERIES; HYPERSURFACES; SPACE; GRAPH;
D O I
10.1103/PhysRevLett.122.031601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. We prove that massless Feynman integrals in four dimensions have a rigidity bounded by 2(L - 1) at L loops provided they are in the class that we call marginal: those with (L + 1)D/2 propagators in (even) D dimensions. We show that marginal Feynman integrals in D dimensions generically involve Calabi-Yau geometries, and we give examples of finite four-dimensional Feynman integrals in massless phi(4) theory that saturate our predicted bound in rigidity at all loop orders.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Quantum periods and spectra in dimer models and Calabi-Yau geometries
    Huang, Min-xin
    Sugimoto, Yuji
    Wang, Xin
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (09)
  • [12] Holomorphic Cartan geometries, Calabi-Yau manifolds and rational curves
    Biswas, Indranil
    McKay, Benjamin
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2010, 28 (01) : 102 - 106
  • [13] Taming Calabi-Yau Feynman Integrals: The Four-Loop Equal-Mass Banana Integral
    Poegel, Sebastian
    Wang, Xing
    Weinzierl, Stefan
    PHYSICAL REVIEW LETTERS, 2023, 130 (10)
  • [14] New Exact Quantization Condition for Toric Calabi-Yau Geometries
    Wang, Xin
    Zhang, Guojun
    Huang, Min-xin
    PHYSICAL REVIEW LETTERS, 2015, 115 (12)
  • [15] CALABI-YAU COALGEBRAS
    He, J-W
    Torrecillas, B.
    Van Oystaeyen, F.
    Zhang, Y.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (12) : 4644 - 4661
  • [16] The bounded derived categories of the Tamari lattices are fractionally Calabi-Yau
    Rognerud, Baptiste
    ADVANCES IN MATHEMATICS, 2021, 389
  • [17] Calabi-Yau Feynman integrals in gravity: ε-factorized form for apparent singularities
    Hjalte Frellesvig
    Roger Morales
    Sebastian Pögel
    Stefan Weinzierl
    Matthias Wilhelm
    Journal of High Energy Physics, 2025 (2)
  • [18] Complete Calabi-Yau metrics from smoothing Calabi-Yau complete intersections
    Firester, Benjy J.
    GEOMETRIAE DEDICATA, 2024, 218 (02)
  • [19] The Calabi-Yau Theorem
    Blocki, Zbigniew
    COMPLEX MONGE-AMPERE EQUATIONS AND GEODESICS IN THE SPACE OF KAHLER METRICS, 2012, 2038 : 201 - 227
  • [20] On Calabi-Yau supermanifolds
    Rocek, Martin
    Wadhwa, Neal
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 9 (02) : 315 - 320