Bounded Collection of Feynman Integral Calabi-Yau Geometries

被引:82
|
作者
Bourjaily, Jacob L. [1 ,2 ]
McLeod, Andrew J. [1 ,2 ]
von Hippel, Matt [1 ,2 ]
Wilhelm, Matthias [1 ,2 ]
机构
[1] Univ Copenhagen, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
基金
欧洲研究理事会;
关键词
HODGE STRUCTURE; DIAGRAMS; SERIES; HYPERSURFACES; SPACE; GRAPH;
D O I
10.1103/PhysRevLett.122.031601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. We prove that massless Feynman integrals in four dimensions have a rigidity bounded by 2(L - 1) at L loops provided they are in the class that we call marginal: those with (L + 1)D/2 propagators in (even) D dimensions. We show that marginal Feynman integrals in D dimensions generically involve Calabi-Yau geometries, and we give examples of finite four-dimensional Feynman integrals in massless phi(4) theory that saturate our predicted bound in rigidity at all loop orders.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] On generalized Calabi-Yau nilmanifolds
    Catellani, Giulio
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (01) : 39 - 57
  • [32] On generalized Calabi-Yau nilmanifolds
    Giulio Catellani
    Annali di Matematica Pura ed Applicata, 2008, 187 : 39 - 57
  • [33] Calabi-Yau threefolds with boundary
    Donaldson, Simon
    Lehmann, Fabian
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2025, 21 (03) : 1119 - 1170
  • [34] Calabi-Yau algebras and their deformations
    He, Ji-Wei
    Van Oystaeyen, Fred
    Zhang, Yinhuo
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (03): : 335 - 347
  • [35] Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
    Lee, Nam-Hoon
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (04):
  • [36] Numerical Calabi-Yau metrics
    Douglas, Michael R.
    Karp, Robert L.
    Lukic, Sergio
    Reinbacher, Rene
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
  • [37] Effective Superpotentials for Compact D5-Brane Calabi-Yau Geometries
    Jockers, Hans
    Soroush, Masoud
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (01) : 249 - 290
  • [38] Calabi-Yau Frobenius algebras
    Eu, Ching-Hwa
    Schedler, Travis
    JOURNAL OF ALGEBRA, 2009, 321 (03) : 774 - 815
  • [39] Calabi-Yau manifolds and their degenerations
    Tosatti, Valentino
    BLAVATNIK AWARDS FOR YOUNG SCIENTISTS 2011, 2012, 1260 : 8 - 13
  • [40] On noncommutative Calabi-Yau hypersurfaces
    Belhaj, A
    Saidi, EH
    PHYSICS LETTERS B, 2001, 523 (1-2) : 191 - 198