Bounded Collection of Feynman Integral Calabi-Yau Geometries

被引:82
|
作者
Bourjaily, Jacob L. [1 ,2 ]
McLeod, Andrew J. [1 ,2 ]
von Hippel, Matt [1 ,2 ]
Wilhelm, Matthias [1 ,2 ]
机构
[1] Univ Copenhagen, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
基金
欧洲研究理事会;
关键词
HODGE STRUCTURE; DIAGRAMS; SERIES; HYPERSURFACES; SPACE; GRAPH;
D O I
10.1103/PhysRevLett.122.031601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. We prove that massless Feynman integrals in four dimensions have a rigidity bounded by 2(L - 1) at L loops provided they are in the class that we call marginal: those with (L + 1)D/2 propagators in (even) D dimensions. We show that marginal Feynman integrals in D dimensions generically involve Calabi-Yau geometries, and we give examples of finite four-dimensional Feynman integrals in massless phi(4) theory that saturate our predicted bound in rigidity at all loop orders.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Embedding Feynman integral (Calabi-Yau) geometries in weighted projective space
    Bourjaily, Jacob L.
    McLeod, Andrew J.
    Vergu, Cristian
    Volk, Matthias
    von Hippel, Matt
    Wilhelm, Matthias
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (01)
  • [2] Polynomial Roots and Calabi-Yau Geometries
    He, Yang-Hui
    ADVANCES IN HIGH ENERGY PHYSICS, 2011, 2011
  • [3] CALABI-YAU GEOMETRIES: ALGORITHMS, DATABASES AND PHYSICS
    He, Yang-Hui
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2013, 28 (21):
  • [4] Holomorphic Cartan geometries and Calabi-Yau manifolds
    Biswas, Indranil
    McKay, Benjamin
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (04) : 661 - 663
  • [5] Holomorphic Parabolic Geometries and Calabi-Yau Manifolds
    McKay, Benjamin
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [6] Calabi-Yau and fractional Calabi-Yau categories
    Kuznetsov, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 753 : 239 - 267
  • [7] Branched Holomorphic Cartan Geometries and Calabi-Yau Manifolds
    Biswas, Indranil
    Dumitrescu, Sorin
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (23) : 7428 - 7458
  • [8] Feynman integrals in dimensional regularization and extensions of Calabi-Yau motives
    Kilian Bönisch
    Claude Duhr
    Fabian Fischbach
    Albrecht Klemm
    Christoph Nega
    Journal of High Energy Physics, 2022
  • [9] Feynman integrals in dimensional regularization and extensions of Calabi-Yau motives
    Bonisch, Kilian
    Duhr, Claude
    Fischbach, Fabian
    Klemm, Albrecht
    Nega, Christoph
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [10] Quantum periods and spectra in dimer models and Calabi-Yau geometries
    Min-xin Huang
    Yuji Sugimoto
    Xin Wang
    Journal of High Energy Physics, 2020