Application of the UPRE method to optimal parameter selection for large scale regularization problems

被引:8
|
作者
Lin, Youzuo [1 ]
Wohlberg, Brendt [2 ]
机构
[1] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
[2] Los Alamos Natl Lab, Math Modeling & Anal, Los Alamos, NM 87545 USA
来源
2008 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS & INTERPRETATION | 2008年
关键词
parameter selection; large scale problem; inverse problem; Tikhonov regularization; total variation regularization;
D O I
10.1109/SSIAI.2008.4512292
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Regularization is an important method for solving a wide variety of inverse problems in image processing. In order to optimize the reconstructed image, it is important to choose the optimal regularization parameter. The Unbiased Predictive Risk Estimator (UPRE) has been shown to give a very good estimate of this parameter. Applying the traditional UPRE is impractical, however, in the case of inverse problems such as deblurring, due to the large scale of the associated linear problem. We propose an approach to reducing the large scale problem to a small problem, significantly reducing computational requirements while providing a good approximation to the original problem.
引用
收藏
页码:89 / +
页数:2
相关论文
共 50 条
  • [41] ON CONSTRAINED STOCHASTIC OPTIMAL PARAMETER SELECTION-PROBLEMS
    GOH, CJ
    TEO, KL
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 41 (03) : 393 - 405
  • [42] A variable projection method for large-scale inverse problems with l1 regularization
    Chung, Matthias
    Renaut, Rosemary A.
    APPLIED NUMERICAL MATHEMATICS, 2023, 192 : 297 - 318
  • [43] Erratum to: Optimal selection of regularization parameter in total variation method for reducing noise in magnetic resonance images of the brain
    Osadebey Michael
    Nizar Bouguila
    Douglas Arnold
    Biomedical Engineering Letters, 2014, 4 (2) : 194 - 194
  • [44] Dynamic level set regularization for large distributed parameter estimation problems
    van den Doel, K.
    Ascher, U. M.
    INVERSE PROBLEMS, 2007, 23 (03) : 1271 - 1288
  • [45] IMAGE REGISTRATION WITH OPTIMAL REGULARIZATION PARAMETER SELECTION BY LEARNED AUTO ENCODER FEATURES
    Akossi, Aurelie
    Wang, Fusheng
    Teodoro, George
    Kong, Jun
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 702 - 705
  • [46] Near-optimal Parameter Selection Methods for l2 Regularization
    Ballal, Tarig
    Suliman, Mohamed
    Al-Naffouri, Tareq Y.
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 1295 - 1299
  • [47] SURE-Based Optimal Selection of Regularization Parameter for Total Variation Deconvolution
    Xue, Feng
    Liu, Peng
    Liu, Jiaqi
    Liu, Xin
    Liu, Hongyan
    2017 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY AND MANAGEMENT (ICITM), 2017, : 176 - 180
  • [48] Electrocardiographic Imaging in Atrial Fibrillation: Selection of the Optimal Tikhonov-Regularization Parameter
    Molero, Ruben
    Fambuena, Carlos
    Climent, Andreu M.
    Guillem, Maria S.
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [49] A new method for choosing the regularization parameter in time-dependent inverse problems and its application to magnetocardiography
    Schreiber, J
    Haueisen, J
    Nenonen, J
    IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) : 1104 - 1107
  • [50] AN OPTIMAL SOLUTION METHOD FOR LARGE-SCALE MULTIPLE TRAVELING SALESMEN PROBLEMS
    GAVISH, B
    SRIKANTH, K
    OPERATIONS RESEARCH, 1986, 34 (05) : 698 - 717