Application of the UPRE method to optimal parameter selection for large scale regularization problems

被引:8
|
作者
Lin, Youzuo [1 ]
Wohlberg, Brendt [2 ]
机构
[1] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
[2] Los Alamos Natl Lab, Math Modeling & Anal, Los Alamos, NM 87545 USA
来源
2008 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS & INTERPRETATION | 2008年
关键词
parameter selection; large scale problem; inverse problem; Tikhonov regularization; total variation regularization;
D O I
10.1109/SSIAI.2008.4512292
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Regularization is an important method for solving a wide variety of inverse problems in image processing. In order to optimize the reconstructed image, it is important to choose the optimal regularization parameter. The Unbiased Predictive Risk Estimator (UPRE) has been shown to give a very good estimate of this parameter. Applying the traditional UPRE is impractical, however, in the case of inverse problems such as deblurring, due to the large scale of the associated linear problem. We propose an approach to reducing the large scale problem to a small problem, significantly reducing computational requirements while providing a good approximation to the original problem.
引用
收藏
页码:89 / +
页数:2
相关论文
共 50 条
  • [22] A control parameterization method for solving combined fractional optimal parameter selection and optimal control problems
    Yi, Xiaopeng
    Gong, Zhaohua
    Liu, Chongyang
    Cheong, Huey Tyng
    Teo, Kok Lay
    Wang, Song
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 141
  • [23] A COMPUTATIONAL METHOD FOR COMBINED OPTIMAL PARAMETER SELECTION AND OPTIMAL-CONTROL PROBLEMS WITH GENERAL CONSTRAINTS
    TEO, KL
    GOH, CJ
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1989, 30 : 350 - 364
  • [24] Optimal Parameter Selection for the Alternating Direction Method of Multipliers (ADMM): Quadratic Problems
    Ghadimi, Euhanna
    Teixeira, Andre
    Shames, Iman
    Johansson, Mikael
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (03) : 644 - 658
  • [25] Regularization of Large Scale Total Least Squares Problems
    Voss, Heinrich
    Lampe, Joerg
    COMPUTER INFORMATION SYSTEMS - ANALYSIS AND TECHNOLOGIES, 2011, 245 : 22 - +
  • [26] Regularization parameter estimation for large-scale Tikhonov regularization using a priori information
    Renaut, Rosemary A.
    Hnetynkova, Iveta
    Mead, Jodi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 3430 - 3445
  • [27] Optimal selection of regularization parameter in total variation method for reducing noise in magnetic resonance images of the brain
    Osadebey M.
    Bouguila N.
    Arnold D.
    Biomedical Engineering Letters, 2014, 4 (1) : 80 - 92
  • [28] Optimal Selection of the Regularization Parameter for pyGIMLi: Geophysical Inversion and Modeling Library
    Quiceno, Brayan A.
    Munoz, Andres M.
    Paniagua, Juan G.
    Bustamante, Moises O.
    2022 IEEE ANDESCON, 2022, : 582 - 586
  • [29] Application of the additive Schwarz method to large scale Poisson problems
    Singh, KM
    Williams, JJR
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2004, 20 (03): : 193 - 205
  • [30] Optimized Parameter Search for Large Datasets of the Regularization Parameter and Feature Selection for Ridge Regression
    Buteneers, Pieter
    Caluwaerts, Ken
    Dambre, Joni
    Verstraeten, David
    Schrauwen, Benjamin
    NEURAL PROCESSING LETTERS, 2013, 38 (03) : 403 - 416