Steiner triple systems of order 19 and 21 with subsystems of order 7

被引:22
|
作者
Kaski, Petteri [1 ]
Ostergard, Patric R. J. [2 ]
Topalova, Svetlana [3 ]
Zlatarski, Rosen [3 ]
机构
[1] Helsinki Univ Technol, Lab Theoret Comp Sci, FIN-02150 Espoo, Finland
[2] Helsinki Univ Technol, Dept Elect & Commun Engn, FIN-02150 Espoo, Finland
[3] Bulgarian Acad Sci, Inst Math & Informat, Veliko Tarnovo 5000, Bulgaria
关键词
classification; doubly resolvable design; Steiner triple system; subsystem;
D O I
10.1016/j.disc.2006.06.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Steiner triple systems (STSs) with subsystems of order 7 are classified. For order 19, this classification is complete, but for order 21 it is restricted to Wilson-type systems, which contain three subsystems of order 7 on disjoint point sets. The classified STSs of order 21 are tested for resolvability; none of them is doubly resolvable. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2732 / 2741
页数:10
相关论文
共 50 条
  • [21] Steiner Triple Systems of Order 21 with a Transversal Subdesign TD(3,6)
    Guan, Y.
    Shi, M. J.
    Krotov, D. S.
    PROBLEMS OF INFORMATION TRANSMISSION, 2020, 56 (01) : 23 - 32
  • [23] Construction and Enumeration of Steiner Triple Systems with Order sxt
    Li, Xiao-Yi
    Xu, Zhao-Di
    Chou, Wan-Xi
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 4243 - 4247
  • [24] Construction and Enumeration of Steiner Triple Systems with Order V
    Xu, Zhaodi
    Li, Xiaoyi
    Chou, Wanxi
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE IV, PTS 1-5, 2014, 496-500 : 2355 - +
  • [25] An algebraic representation of Steiner triple systems of order 13
    Pavone, Marco
    EXAMPLES AND COUNTEREXAMPLES, 2021, 1
  • [26] The Cyclically Resolvable Steiner Triple Systems of Order 57
    Topalova, Svetlana
    Zhelezova, Stela
    MATHEMATICS, 2025, 13 (02)
  • [27] Steiner triple systems with disjoint or intersecting subsystems
    Colbourn, CJ
    Oravas, MA
    Rees, RS
    JOURNAL OF COMBINATORIAL DESIGNS, 2000, 8 (01) : 58 - 77
  • [28] Steiner triple systems with two disjoint subsystems
    Bryant, D
    Horsley, D
    JOURNAL OF COMBINATORIAL DESIGNS, 2006, 14 (01) : 14 - 24
  • [29] Nearly Kirkman triple systems of order 18 and Hanani triple systems of order 19
    Colbourn, Charles J.
    Kaski, Petteri
    Ostergard, Patric R. J.
    Pike, David A.
    Pottonen, Olli
    DISCRETE MATHEMATICS, 2011, 311 (10-11) : 827 - 834
  • [30] Bi-Embeddings of Steiner Triple Systems of Order 15
    G. K. Bennett
    M. J. Grannell
    T. S. Griggs
    Graphs and Combinatorics, 2001, 17 : 193 - 197