Construction and Enumeration of Steiner Triple Systems with Order V

被引:0
|
作者
Xu, Zhaodi [1 ]
Li, Xiaoyi [1 ]
Chou, Wanxi [2 ]
机构
[1] Shenyang Normal Univ, Sch Math & Syst Sci, Shenyang 110034, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Civil Engn & Architecture, Huainan Anhu 232001, Peoples R China
基金
美国国家科学基金会;
关键词
Steiner triple systems; large sets; construction; Disjoint; LARGE SETS; EXISTENCE;
D O I
10.4028/www.scientific.net/AMM.496-500.2355
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper describes the basic concept of constructing the large sets of Steiner triple systems of order v. It proposes a method of constructing the large sets of Steiner triple systems by using permutation of original matrix A((o)), and it presents entire procedure of constructing the large sets of Steiner triple systems of order 7. It verified the number of disjoint Steiner triple systems d(7) = 2.
引用
收藏
页码:2355 / +
页数:3
相关论文
共 50 条
  • [1] Construction and Enumeration of Steiner Triple Systems with Order sxt
    Li, Xiao-Yi
    Xu, Zhao-Di
    Chou, Wan-Xi
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 4243 - 4247
  • [2] Method of Construction and Enumeration Steiner Triple Systems with Order 19
    Li, XiaoYi
    Xu, ZhaoDi
    Chou, WanXi
    ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 1205 - +
  • [3] ENUMERATION OF STEINER TRIPLE SYSTEMS WITH SUBSYSTEMS
    Kaski, Petteri
    Ostergard, Patric R. J.
    Popa, Alexandru
    MATHEMATICS OF COMPUTATION, 2015, 84 (296) : 3051 - 3067
  • [4] A CONSTRUCTION OF CYCLIC STEINER TRIPLE-SYSTEMS OF ORDER PN
    PHELPS, KT
    DISCRETE MATHEMATICS, 1987, 67 (01) : 107 - 110
  • [5] The Steiner triple systems of order 19
    Kaski, P
    Östergård, PRJ
    MATHEMATICS OF COMPUTATION, 2004, 73 (248) : 2075 - 2092
  • [6] On Large Sets of v−1 L-Intersecting Steiner Triple Systems of Order v
    F. Franek
    M. J. Grannell
    T. S. Griggs
    A. Rosa
    Designs, Codes and Cryptography, 2002, 26 : 243 - 256
  • [7] CONSTRUCTION OF DISJOINT STEINER TRIPLE-SYSTEMS
    QUIRING, D
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1979, 27 (03) : 407 - 408
  • [8] Sparse Steiner triple systems of order 21
    Kokkala, Janne I.
    Ostergard, Patric R. J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2021, 29 (02) : 75 - 83
  • [9] STEINER TRIPLE SYSTEMS OF ORDER 21 WITH SUBSYSTEMS
    Heinlein, Daniel
    Ostergard, Patric R. J.
    GLASNIK MATEMATICKI, 2023, 58 (02) : 233 - 245
  • [10] Steiner triple systems of order 15 and their codes
    Tonchev, VD
    Weishaar, RS
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 58 (01) : 207 - 216