Construction and Enumeration of Steiner Triple Systems with Order V

被引:0
|
作者
Xu, Zhaodi [1 ]
Li, Xiaoyi [1 ]
Chou, Wanxi [2 ]
机构
[1] Shenyang Normal Univ, Sch Math & Syst Sci, Shenyang 110034, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Civil Engn & Architecture, Huainan Anhu 232001, Peoples R China
来源
FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE IV, PTS 1-5 | 2014年 / 496-500卷
基金
美国国家科学基金会;
关键词
Steiner triple systems; large sets; construction; Disjoint; LARGE SETS; EXISTENCE;
D O I
10.4028/www.scientific.net/AMM.496-500.2355
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper describes the basic concept of constructing the large sets of Steiner triple systems of order v. It proposes a method of constructing the large sets of Steiner triple systems by using permutation of original matrix A((o)), and it presents entire procedure of constructing the large sets of Steiner triple systems of order 7. It verified the number of disjoint Steiner triple systems d(7) = 2.
引用
收藏
页码:2355 / +
页数:3
相关论文
共 50 条
  • [31] Bi-Embeddings of Steiner Triple Systems of Order 15
    G. K. Bennett
    M. J. Grannell
    T. S. Griggs
    Graphs and Combinatorics, 2001, 17 : 193 - 197
  • [32] Bi-embeddings of Steiner triple systems of order 15
    Bennett, GK
    Grannell, MJ
    Griggs, TS
    GRAPHS AND COMBINATORICS, 2001, 17 (02) : 193 - 197
  • [33] TRANSITIVE STEINER TRIPLE-SYSTEMS OF ORDER-25
    TONCHEV, VD
    DISCRETE MATHEMATICS, 1987, 67 (02) : 211 - 214
  • [34] A census of the orientable biembeddings of Steiner triple systems of order 15
    Grannell, M. J.
    Griggs, T. S.
    Knor, M.
    Thrower, A. R. W.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 42 : 253 - 259
  • [35] 2000000 STEINER TRIPLE-SYSTEMS OF ORDER-19
    STINSON, DR
    FERCH, H
    MATHEMATICS OF COMPUTATION, 1985, 44 (170) : 533 - 535
  • [36] MAXIMAL PARTIAL STEINER TRIPLE-SYSTEMS OF ORDER V-LESS-THAN-OR-EQUAL-TO-11
    COLBOURN, CJ
    ROSA, A
    ARS COMBINATORIA, 1985, 20 : 5 - 28
  • [37] Another complete invariant for Steiner triple systems of order 15
    Anglada, O
    Maurras, JF
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (05) : 388 - 391
  • [38] Cyclically resolvable cyclic Steiner triple systems of order 21 and 39
    Lam, CWH
    Miao, Y
    DISCRETE MATHEMATICS, 2000, 219 (1-3) : 173 - 185
  • [39] CYCLIC LARGE SETS OF STEINER TRIPLE-SYSTEMS OF ORDER 15
    PHELPS, KT
    MATHEMATICS OF COMPUTATION, 1990, 55 (192) : 821 - 824
  • [40] TRANSITIVE STEINER AND KIRKMAN TRIPLE-SYSTEMS OF ORDER-27
    COLBOURN, CJ
    MAGLIVERAS, SS
    MATHON, RA
    MATHEMATICS OF COMPUTATION, 1992, 58 (197) : 441 - &