Construction and Enumeration of Steiner Triple Systems with Order V

被引:0
|
作者
Xu, Zhaodi [1 ]
Li, Xiaoyi [1 ]
Chou, Wanxi [2 ]
机构
[1] Shenyang Normal Univ, Sch Math & Syst Sci, Shenyang 110034, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Civil Engn & Architecture, Huainan Anhu 232001, Peoples R China
来源
FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE IV, PTS 1-5 | 2014年 / 496-500卷
基金
美国国家科学基金会;
关键词
Steiner triple systems; large sets; construction; Disjoint; LARGE SETS; EXISTENCE;
D O I
10.4028/www.scientific.net/AMM.496-500.2355
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper describes the basic concept of constructing the large sets of Steiner triple systems of order v. It proposes a method of constructing the large sets of Steiner triple systems by using permutation of original matrix A((o)), and it presents entire procedure of constructing the large sets of Steiner triple systems of order 7. It verified the number of disjoint Steiner triple systems d(7) = 2.
引用
收藏
页码:2355 / +
页数:3
相关论文
共 50 条
  • [41] The Cycle Switching Graph of the Steiner Triple Systems of Order 19 is Connected
    Petteri Kaski
    Veli Mäkinen
    Patric R. J. Östergård
    Graphs and Combinatorics, 2011, 27 : 539 - 546
  • [42] ORIENTABLE SELF-EMBEDDINGS OF STEINER TRIPLE SYSTEMS OF ORDER 15
    Bennett, G. K.
    Grannell, M. J.
    Griggs, T. S.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2006, 75 (02): : 163 - 172
  • [43] On the bi-embeddability of certain Steiner triple systems of order 15
    Bennett, GK
    Grannell, MJ
    Griggs, TS
    EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (05) : 499 - 505
  • [44] STEINER TRIPLE-SYSTEMS OF ORDER-21 WITH AUTOMORPHISMS OF ORDER-7
    TONCHEV, VD
    ARS COMBINATORIA, 1987, 23 : 93 - 96
  • [45] THE 2-ROTATIONAL STEINER TRIPLE-SYSTEMS OF ORDER 25
    CHEE, YM
    ROYLE, GF
    DISCRETE MATHEMATICS, 1991, 97 (1-3) : 93 - 100
  • [46] Embedding Steiner triple systems in hexagon triple systems
    Lindner, C. C.
    Quattrocchi, Gaetano
    Rodger, C. A.
    DISCRETE MATHEMATICS, 2009, 309 (02) : 487 - 490
  • [47] The Cycle Switching Graph of the Steiner Triple Systems of Order 19 is Connected
    Kaski, Petteri
    Makinen, Veli
    Ostergard, Patric R. J.
    GRAPHS AND COMBINATORICS, 2011, 27 (04) : 539 - 546
  • [48] Large sets of large sets of Steiner triple systems of order 9
    Bryant, D
    Grannell, M
    Griggs, T
    UTILITAS MATHEMATICA, 2003, 64 : 115 - 118
  • [49] Enumerating Steiner triple systems
    Heinlein, Daniel
    Ostergard, Patric R. J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (10) : 479 - 495
  • [50] On colourings of Steiner triple systems
    Forbes, AD
    Grannell, MJ
    Griggs, TS
    DISCRETE MATHEMATICS, 2003, 261 (1-3) : 255 - 276