Steiner triple systems of order 19 and 21 with subsystems of order 7

被引:22
|
作者
Kaski, Petteri [1 ]
Ostergard, Patric R. J. [2 ]
Topalova, Svetlana [3 ]
Zlatarski, Rosen [3 ]
机构
[1] Helsinki Univ Technol, Lab Theoret Comp Sci, FIN-02150 Espoo, Finland
[2] Helsinki Univ Technol, Dept Elect & Commun Engn, FIN-02150 Espoo, Finland
[3] Bulgarian Acad Sci, Inst Math & Informat, Veliko Tarnovo 5000, Bulgaria
关键词
classification; doubly resolvable design; Steiner triple system; subsystem;
D O I
10.1016/j.disc.2006.06.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Steiner triple systems (STSs) with subsystems of order 7 are classified. For order 19, this classification is complete, but for order 21 it is restricted to Wilson-type systems, which contain three subsystems of order 7 on disjoint point sets. The classified STSs of order 21 are tested for resolvability; none of them is doubly resolvable. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2732 / 2741
页数:10
相关论文
共 50 条
  • [31] Bi-embeddings of Steiner triple systems of order 15
    Bennett, GK
    Grannell, MJ
    Griggs, TS
    GRAPHS AND COMBINATORICS, 2001, 17 (02) : 193 - 197
  • [32] TRANSITIVE STEINER TRIPLE-SYSTEMS OF ORDER-25
    TONCHEV, VD
    DISCRETE MATHEMATICS, 1987, 67 (02) : 211 - 214
  • [33] A CONSTRUCTION OF CYCLIC STEINER TRIPLE-SYSTEMS OF ORDER PN
    PHELPS, KT
    DISCRETE MATHEMATICS, 1987, 67 (01) : 107 - 110
  • [34] A census of the orientable biembeddings of Steiner triple systems of order 15
    Grannell, M. J.
    Griggs, T. S.
    Knor, M.
    Thrower, A. R. W.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 42 : 253 - 259
  • [35] Another complete invariant for Steiner triple systems of order 15
    Anglada, O
    Maurras, JF
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (05) : 388 - 391
  • [36] STEINER TRIPLE SYSTEMS WITH GEOMETRIC MINIMALLY GENERATED SUBSYSTEMS
    HALL, JI
    QUARTERLY JOURNAL OF MATHEMATICS, 1974, 25 (97): : 41 - 50
  • [37] CYCLIC STEINER TRIPLE-SYSTEMS WITH CYCLIC SUBSYSTEMS
    PHELPS, K
    ROSA, A
    MENDELSOHN, E
    EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (04) : 363 - 367
  • [38] CYCLIC LARGE SETS OF STEINER TRIPLE-SYSTEMS OF ORDER 15
    PHELPS, KT
    MATHEMATICS OF COMPUTATION, 1990, 55 (192) : 821 - 824
  • [39] TRANSITIVE STEINER AND KIRKMAN TRIPLE-SYSTEMS OF ORDER-27
    COLBOURN, CJ
    MAGLIVERAS, SS
    MATHON, RA
    MATHEMATICS OF COMPUTATION, 1992, 58 (197) : 441 - &
  • [40] On the bi-embeddability of certain Steiner triple systems of order 15
    Bennett, GK
    Grannell, MJ
    Griggs, TS
    EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (05) : 499 - 505