ZAME: Interactive large-scale graph visualization

被引:0
|
作者
Elmqvist, Niklas
Do, Thanh-Nghi
Goodell, Howard
Henry, Nathalie
Fekete, Jean-Daniel
机构
关键词
H.5.1 [information systems]: multimedia information; systems-animations; H.5.2 [information systems]: user interfaces; I.3 [computer methodologies]: computer graphics;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present the Zoomable Adjacency Matrix Explorer (ZAME), a visualization tool for exploring graphs at a scale of millions of nodes and edges. ZAME is based on an adjacency matrix graph representation aggregated at multiple scales. It allows analysts to explore a graph at many levels, zooming and panning with interactive performance from an overview to the most detailed views. Several components work together in the ZAME tool to make this possible. Efficient matrix ordering algorithms group related elements. Individual data cases are aggregated into higher-order meta-representations. Aggregates are arranged into a pyramid hierarchy that allows for on-demand paging to GPU shader programs to support smooth multiscale browsing. Using ZAME, we are able to explore the entire French Wikipedia-over 500,000 articles and 6,000,000 links-with interactive performance on standard consumer-level computer hardware.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 50 条
  • [31] Visualization for Large-scale Gaussian Updates
    Rougier, Jonathan
    Zammit-Mangion, Andrew
    SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (04) : 1153 - 1161
  • [32] Large-Scale Immune Models and Visualization
    Perrin, Dimitri
    Burns, John
    ERCIM NEWS, 2008, (74): : 35 - 36
  • [33] Large-Scale Astrophysical Visualization on Smartphones
    Becciani, U.
    Massimino, P.
    Costa, A.
    Gheller, C.
    Grillo, A.
    Krokos, M.
    Petta, C.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XX, 2011, 442 : 621 - +
  • [34] Dynamic sharing of large-scale visualization
    Huang, Jian
    Liu, Huadong
    Beck, Micah
    Gaston, Andrew
    Gao, Jinzhu
    Moore, Terry
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2007, 27 (01) : 20 - 25
  • [35] LARGE-SCALE VISUALIZATION OF SPARSE MATRICES
    Langr, D.
    Simecek, I.
    Tvrdiki, P.
    Dytrych, T.
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2014, 15 (01): : 21 - 31
  • [36] Visualization of large-scale trajectory datasets
    Zachar, Gergely
    2023 CYBER-PHYSICAL SYSTEMS AND INTERNET-OF-THINGS WEEK, CPS-IOT WEEK WORKSHOPS, 2023, : 152 - 157
  • [37] Visualization of Large-Scale Neural Simulations
    Hernando, Juan B.
    Duelo, Carlos
    Martin, Vicente
    BRAIN-INSPIRED COMPUTING, 2014, 8603 : 184 - 197
  • [38] LARGE-SCALE INTERACTIVE ADMINISTRATIVE SYSTEM
    WIMBROW, JH
    IBM SYSTEMS JOURNAL, 1971, 10 (04) : 260 - &
  • [39] Large-scale Graph Representation Learning
    Leskovec, Jure
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 4 - 4
  • [40] Rapid, Progressive Sub-Graph Explorations for Interactive Visual Analytics over Large-Scale Graph Datasets
    Armstrong, Samuel
    Bruhwiler, Kevin
    Pallickara, Sangmi Lee
    BDCAT'19: PROCEEDINGS OF THE 6TH IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, 2019, : 1 - 10