ZAME: Interactive large-scale graph visualization

被引:0
|
作者
Elmqvist, Niklas
Do, Thanh-Nghi
Goodell, Howard
Henry, Nathalie
Fekete, Jean-Daniel
机构
关键词
H.5.1 [information systems]: multimedia information; systems-animations; H.5.2 [information systems]: user interfaces; I.3 [computer methodologies]: computer graphics;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present the Zoomable Adjacency Matrix Explorer (ZAME), a visualization tool for exploring graphs at a scale of millions of nodes and edges. ZAME is based on an adjacency matrix graph representation aggregated at multiple scales. It allows analysts to explore a graph at many levels, zooming and panning with interactive performance from an overview to the most detailed views. Several components work together in the ZAME tool to make this possible. Efficient matrix ordering algorithms group related elements. Individual data cases are aggregated into higher-order meta-representations. Aggregates are arranged into a pyramid hierarchy that allows for on-demand paging to GPU shader programs to support smooth multiscale browsing. Using ZAME, we are able to explore the entire French Wikipedia-over 500,000 articles and 6,000,000 links-with interactive performance on standard consumer-level computer hardware.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 50 条
  • [21] Immersive and Interactive 3D Visualization of Large-Scale Geoscientific Data
    Flatken, Markus
    Schneegans, Simon
    Fellegara, Riccardo
    Gerndt, Andreas
    PRESENCE-VIRTUAL AND AUGMENTED REALITY, 2024, 33 : 57 - 76
  • [22] Configurable data prefetching scheme for interactive visualization of large-scale volume data
    Jeong, Byungil
    Navratil, Paul A.
    Gaither, Kelly P.
    Abram, Gregory
    Johnson, Gregory P.
    VISUALIZATION AND DATA ANALYSIS 2012, 2012, 8294
  • [23] graphVizdb: A Scalable Platform for Interactive Large Graph Visualization
    Bikakis, Nikos
    Liagouris, John
    Krommyda, Maria
    Papastefanatos, George
    Sellis, Timos
    2016 32ND IEEE INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2016, : 1342 - 1345
  • [24] Interactive Large-Scale Procedural Forest Construction and Visualization Based on Particle Flow Simulation
    Kohek, Stefan
    Strnad, Damjan
    COMPUTER GRAPHICS FORUM, 2018, 37 (01) : 389 - 402
  • [25] SLIDE - a web-based tool for interactive visualization of large-scale - omics data
    Ghosh, Soumita
    Datta, Abhik
    Tan, Kaisen
    Choi, Hyungwon
    BIOINFORMATICS, 2019, 35 (02) : 346 - 348
  • [26] TissUUmaps: interactive visualization of large-scale spatial gene expression and tissue morphology data
    Solorzano, Leslie
    Partel, Gabriele
    Wahlby, Carolina
    BIOINFORMATICS, 2020, 36 (15) : 4363 - 4365
  • [27] Ssecrett and NeuroTrace: Interactive Visualization and Analysis Tools for Large-Scale Neuroscience Data Sets
    Jeong, Won-Ki
    Beyer, Johanna
    Hadwiger, Markus
    Blue, Rusty
    Law, Charles
    Vazquez-Reina, Amelio
    Reid, R. Clay
    Lichtman, Jeff
    Pfister, Hanspeter
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2010, 30 (03) : 58 - 70
  • [28] An Application-Aware Data Replacement Policy for Interactive Large-Scale Scientific Visualization
    Yu, Lina
    Yu, Hongfeng
    Jiang, Hong
    Wang, Jun
    2017 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2017, : 1216 - 1225
  • [29] Designing an Interactive Visualization System for Monitoring Participant Compliance in a Large-Scale, Longitudinal Study
    Sukumar, Poorna Talkad
    Breideband, Thomas
    Martinez, Gonzalo
    Caruso, Megan
    Rose, Sierra
    Steputis, Cooper
    D'Mello, Sidney
    Mark, Gloria
    Striegel, Aaron
    EXTENDED ABSTRACTS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'21), 2021,
  • [30] Information visualization and large-scale repositories
    Collins, Linn Marks
    Hussell, Jeremy A. T.
    Hettinga, Robert K.
    Powell, James E.
    Mane, Ketan K.
    Martinez, Mark L. B.
    LIBRARY HI TECH, 2007, 25 (03) : 366 - 378