Products of ratios of consecutive integers

被引:9
|
作者
De La Bretèche, R
Pomerance, C
Tenenbaum, G
机构
[1] Ecole Normale Super, F-75230 Paris, France
[2] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
[3] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
来源
RAMANUJAN JOURNAL | 2005年 / 9卷 / 1-2期
关键词
extremal problems in number theory; friable integers; sieve; largest prime factor;
D O I
10.1007/s11139-005-0831-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Take the product of the numbers (n/(n + 1))(is an element of n) for 1 <= n < N, where each is an element of(n) is +/- 1. Express the product as a/b in lowest terms. Evidently the minimal possible value for a over all choices for is an element of(n) is 1; just take each is an element of(n) = 1, or each is an element of(n) = 0. Denote the maximal possible value of a by A( N). It is known from work of Nicolas and Langevin that ( log 4 + o( 1)) N <= log A( N) <= (2/ 3 + o(1)) N log N. Using the Rosse-Iwaniec sieve, we improve the lower bound to the same order of magnitude as the upper bound.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 50 条