Products of ratios of consecutive integers

被引:9
|
作者
De La Bretèche, R
Pomerance, C
Tenenbaum, G
机构
[1] Ecole Normale Super, F-75230 Paris, France
[2] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
[3] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
来源
RAMANUJAN JOURNAL | 2005年 / 9卷 / 1-2期
关键词
extremal problems in number theory; friable integers; sieve; largest prime factor;
D O I
10.1007/s11139-005-0831-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Take the product of the numbers (n/(n + 1))(is an element of n) for 1 <= n < N, where each is an element of(n) is +/- 1. Express the product as a/b in lowest terms. Evidently the minimal possible value for a over all choices for is an element of(n) is 1; just take each is an element of(n) = 1, or each is an element of(n) = 0. Denote the maximal possible value of a by A( N). It is known from work of Nicolas and Langevin that ( log 4 + o( 1)) N <= log A( N) <= (2/ 3 + o(1)) N log N. Using the Rosse-Iwaniec sieve, we improve the lower bound to the same order of magnitude as the upper bound.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 50 条
  • [31] SUM OF CONSECUTIVE INTEGERS
    PRIELIPP, B
    FIBONACCI QUARTERLY, 1984, 22 (01): : 87 - 87
  • [32] CONSECUTIVE COMPOSITE INTEGERS
    SUBBARAO, MV
    NORTON, KK
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (08): : 898 - &
  • [33] CONSECUTIVE DIVISORS OF INTEGERS
    ERDOS, P
    TENENBAUM, G
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1983, 111 (02): : 125 - 145
  • [34] On the factorization of consecutive integers
    Bennett, M. A.
    Filaseta, M.
    Trifonov, O.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 629 : 171 - 200
  • [35] HOW MANY PAIRS OF PRODUCTS OF CONSECUTIVE INTEGERS HAVE THE SAME PRIME FACTORS
    ERDOS, P
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (05): : 391 - 392
  • [37] ON HIGHLY COMPOSITE CONSECUTIVE INTEGERS
    SUBRAMANIAN, PK
    BECKER, SF
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (05): : 510 - +
  • [38] DIVISION PROPERTY OF CONSECUTIVE INTEGERS
    CARO, Y
    ISRAEL JOURNAL OF MATHEMATICS, 1979, 33 (01) : 32 - 36
  • [39] Erdos problems on consecutive integers
    Hildebrand, AJ
    PAUL ERDOS AND HIS MATHEMATICS I, 2002, 11 : 305 - 317
  • [40] On the Longest Length of Consecutive Integers
    Zhao, Min Zhi
    Shao, Qi-Man
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (02) : 329 - 338