WHICH TRIANGULAR NUMBERS ARE PRODUCTS OF 3 CONSECUTIVE INTEGERS

被引:0
|
作者
MOHANTY, SP [1 ]
机构
[1] INDIAN INST TECHNOL,DEPT MATH,KANPUR 208016,UTTAR PRADESH,INDIA
关键词
D O I
10.1007/BF01903544
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:31 / 36
页数:6
相关论文
共 50 条
  • [1] Balancing numbers which are products of consecutive integers
    Tengely, Szabolcs
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (1-2): : 197 - 205
  • [2] TRIANGULAR NUMBERS WHICH ARE PRODUCTS OF 2 OTHER TRIANGULAR NUMBERS
    BAGER, A
    DODD, F
    MATTICS, L
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (10): : 928 - 932
  • [3] TRIANGULAR NUMBERS WHICH ARE SUMS OF CONSECUTIVE SQUARES
    FINKELST.R
    LONDON, H
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 103 - &
  • [4] ON PRODUCTS OF CONSECUTIVE INTEGERS
    KATAYAMA, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1990, 66 (10) : 305 - 306
  • [5] Products of consecutive integers
    Bennett, MA
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 : 683 - 694
  • [6] On products of consecutive integers
    Ma, Wu-Xia
    Chen, Yong-Gao
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (3-4): : 487 - 492
  • [7] SQUARES AND PRODUCTS OF CONSECUTIVE INTEGERS
    LORD, G
    FIBONACCI QUARTERLY, 1983, 21 (01): : 68 - 69
  • [8] Products of Ratios of Consecutive Integers
    Régis De La Bretèche
    Carl Pomerance
    Gérald Tenenbaum
    The Ramanujan Journal, 2005, 9 : 131 - 138
  • [9] Products of ratios of consecutive integers
    De La Bretèche, R
    Pomerance, C
    Tenenbaum, G
    RAMANUJAN JOURNAL, 2005, 9 (1-2): : 131 - 138
  • [10] EQUAL PRODUCTS OF CONSECUTIVE INTEGERS
    MACLEOD, RA
    BARRODAL.I
    CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (02): : 255 - &