Products of ratios of consecutive integers

被引:9
|
作者
De La Bretèche, R
Pomerance, C
Tenenbaum, G
机构
[1] Ecole Normale Super, F-75230 Paris, France
[2] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
[3] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
来源
RAMANUJAN JOURNAL | 2005年 / 9卷 / 1-2期
关键词
extremal problems in number theory; friable integers; sieve; largest prime factor;
D O I
10.1007/s11139-005-0831-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Take the product of the numbers (n/(n + 1))(is an element of n) for 1 <= n < N, where each is an element of(n) is +/- 1. Express the product as a/b in lowest terms. Evidently the minimal possible value for a over all choices for is an element of(n) is 1; just take each is an element of(n) = 1, or each is an element of(n) = 0. Denote the maximal possible value of a by A( N). It is known from work of Nicolas and Langevin that ( log 4 + o( 1)) N <= log A( N) <= (2/ 3 + o(1)) N log N. Using the Rosse-Iwaniec sieve, we improve the lower bound to the same order of magnitude as the upper bound.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 50 条
  • [1] Products of Ratios of Consecutive Integers
    Régis De La Bretèche
    Carl Pomerance
    Gérald Tenenbaum
    The Ramanujan Journal, 2005, 9 : 131 - 138
  • [2] ON PRODUCTS OF CONSECUTIVE INTEGERS
    KATAYAMA, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1990, 66 (10) : 305 - 306
  • [3] Products of consecutive integers
    Bennett, MA
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 : 683 - 694
  • [4] On products of consecutive integers
    Ma, Wu-Xia
    Chen, Yong-Gao
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (3-4): : 487 - 492
  • [5] SQUARES AND PRODUCTS OF CONSECUTIVE INTEGERS
    LORD, G
    FIBONACCI QUARTERLY, 1983, 21 (01): : 68 - 69
  • [6] EQUAL PRODUCTS OF CONSECUTIVE INTEGERS
    MACLEOD, RA
    BARRODAL.I
    CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (02): : 255 - &
  • [7] ON LINEAR COMBINATIONS OF PRODUCTS OF CONSECUTIVE INTEGERS
    Bazso, A.
    ACTA MATHEMATICA HUNGARICA, 2020, 162 (02) : 690 - 704
  • [8] Squares from products of consecutive integers
    van der Poorten, A
    Woeginger, G
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (05): : 459 - 462
  • [9] On linear combinations of products of consecutive integers
    A. Bazsó
    Acta Mathematica Hungarica, 2020, 162 : 690 - 704
  • [10] ON PRODUCTS OF DISJOINT BLOCKS OF CONSECUTIVE INTEGERS
    Ulas, Maciej
    ENSEIGNEMENT MATHEMATIQUE, 2005, 51 (3-4): : 331 - 334