Meta-GNN: On Few-shot Node Classification in Graph Meta-learning

被引:94
|
作者
Zhou, Fan [1 ]
Cao, Chengtai [1 ]
Zhang, Kunpeng [2 ]
Trajcevski, Goce [3 ]
Zhong, Ting [1 ]
Geng, Ji [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu, Peoples R China
[2] Univ Maryland, College Pk, MD 20742 USA
[3] Iowa State Univ, Ames, IA USA
基金
中国国家自然科学基金;
关键词
meta-learning; graph neural networks; node classification; few-shot learning;
D O I
10.1145/3357384.3358106
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Meta-learning has received a tremendous recent attention as a possible approach for mimicking human intelligence, i.e., acquiring new knowledge and skills with little or even no demonstration. Most of the existing meta-learning methods are proposed to tackle few-shot learning problems such as image and text, in rather Euclidean domain. However, there are very few works applying meta-learning to non-Euclidean domains, and the recently proposed graph neural networks (GNNs) models do not perform effectively on graph few-shot learning problems. Towards this, we propose a novel graph meta-learning framework - Meta-GNN - to tackle the few-shot node classification problem in graph meta-learning settings. It obtains the prior knowledge of classifiers by training on many similar few-shot learning tasks and then classifies the nodes from new classes with only few labeled samples. Additionally, Meta-GNN is a general model that can be straightforwardly incorporated into any existing state-of-the-art GNN. Our experiments conducted on three benchmark datasets demonstrate that our proposed approach not only improves the node classification performance by a large margin on few-shot learning problems in meta-learning paradigm, but also learns a more general and flexible model for task adaption.
引用
收藏
页码:2357 / 2360
页数:4
相关论文
共 50 条
  • [1] Few-shot Node Classification on Attributed Networks with Graph Meta-learning
    Liu, Yonghao
    Li, Mengyu
    Li, Ximing
    Giunchiglia, Fausto
    Feng, Xiaoyue
    Guan, Renchu
    [J]. PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 471 - 481
  • [2] Few-shot Edge Classification in Graph Meta-learning
    Yang, Xiaoxiao
    Xu, Jungang
    [J]. 2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 166 - 172
  • [3] Contrastive Meta-Learning for Few-shot Node Classification
    Wang, Song
    Tan, Zhen
    Liu, Huan
    Li, Jundong
    [J]. PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2386 - 2397
  • [4] Robust Graph Meta-Learning for Weakly Supervised Few-Shot Node Classification
    Ding, Kaize
    Wang, Jianling
    Li, Jundong
    Caverlee, James
    Liu, Huan
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (04)
  • [5] Fair Meta-Learning For Few-Shot Classification
    Zhao, Chen
    Li, Changbin
    Li, Jincheng
    Chen, Feng
    [J]. 11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 275 - 282
  • [6] Structure-enhanced meta-learning for few-shot graph classification
    Jiang, Shunyu
    Feng, Fuli
    Chen, Weijian
    Li, Xiang
    He, Xiangnan
    [J]. AI OPEN, 2021, 2 : 160 - 167
  • [7] Few-Shot Directed Meta-Learning for Image Classification
    Ouyang, Jihong
    Duan, Ganghai
    Liu, Siguang
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (01)
  • [8] Unsupervised Meta-Learning for Few-Shot Image Classification
    Khodadadeh, Siavash
    Boloni, Ladislau
    Shah, Mubarak
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [9] Meta-Learning for Few-Shot Land Cover Classification
    Russwurm, Marc
    Wang, Sherrie
    Koerner, Marco
    Lobell, David
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 788 - 796
  • [10] META-LEARNING FOR FEW-SHOT TIME SERIES CLASSIFICATION
    Wang, Sherrie
    Russwurm, Marc
    Koerner, Marco
    Lobell, David B.
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 7041 - 7044