Contrastive Meta-Learning for Few-shot Node Classification

被引:1
|
作者
Wang, Song [1 ]
Tan, Zhen [2 ]
Liu, Huan [2 ]
Li, Jundong [1 ]
机构
[1] Univ Virginia, Charlottesville, VA 22903 USA
[2] Arizona State Univ, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
Graph Neural Networks; Few-shot Learning; Weak Supervision;
D O I
10.1145/3580305.3599288
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Few-shot node classification, which aims to predict labels for nodes on graphs with only limited labeled nodes as references, is of great significance in real-world graph mining tasks. To tackle such a label shortage issue, existing works generally leverage the meta-learning framework, which utilizes a number of episodes to extract transferable knowledge from classes with abundant labeled nodes and generalizes the knowledge to other classes with limited labeled nodes. In essence, the primary aim of few-shot node classification is to learn node embeddings that are generalizable across different classes. To accomplish this, the GNN encoder must be able to distinguish node embeddings between different classes, while also aligning embeddings for nodes in the same class. Thus, in this work, we propose to consider both the intra-class and inter-class generalizability of the model. We create a novel contrastive meta-learning framework on graphs, named COSMIC, with two key designs. First, we propose to enhance the intra-class generalizability by involving a contrastive two-step optimization in each episode to explicitly align node embeddings in the same classes. Second, we strengthen the inter-class generalizability by generating hard node classes via a novel similarity-sensitive mix-up strategy. Extensive experiments on few-shot node classification datasets verify the superiority of our framework over state-of-the-art baselines. Our code is provided(1).
引用
收藏
页码:2386 / 2397
页数:12
相关论文
共 50 条
  • [1] Contrastive Knowledge-Augmented Meta-Learning for Few-Shot Classification
    Subramanyam, Rakshith
    Heimann, Mark
    Jayram, T. S.
    Anirudh, Rushil
    Thiagarajan, Jayaraman J.
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2478 - 2486
  • [2] Few-shot Node Classification on Attributed Networks with Graph Meta-learning
    Liu, Yonghao
    Li, Mengyu
    Li, Ximing
    Giunchiglia, Fausto
    Feng, Xiaoyue
    Guan, Renchu
    [J]. PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 471 - 481
  • [3] Meta-GNN: On Few-shot Node Classification in Graph Meta-learning
    Zhou, Fan
    Cao, Chengtai
    Zhang, Kunpeng
    Trajcevski, Goce
    Zhong, Ting
    Geng, Ji
    [J]. PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2357 - 2360
  • [4] Fair Meta-Learning For Few-Shot Classification
    Zhao, Chen
    Li, Changbin
    Li, Jincheng
    Chen, Feng
    [J]. 11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 275 - 282
  • [5] Robust Graph Meta-Learning for Weakly Supervised Few-Shot Node Classification
    Ding, Kaize
    Wang, Jianling
    Li, Jundong
    Caverlee, James
    Liu, Huan
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (04)
  • [6] Few-Shot Directed Meta-Learning for Image Classification
    Ouyang, Jihong
    Duan, Ganghai
    Liu, Siguang
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (01)
  • [7] Unsupervised Meta-Learning for Few-Shot Image Classification
    Khodadadeh, Siavash
    Boloni, Ladislau
    Shah, Mubarak
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [8] Meta-Learning for Few-Shot Land Cover Classification
    Russwurm, Marc
    Wang, Sherrie
    Koerner, Marco
    Lobell, David
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 788 - 796
  • [9] Few-shot Edge Classification in Graph Meta-learning
    Yang, Xiaoxiao
    Xu, Jungang
    [J]. 2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 166 - 172
  • [10] META-LEARNING FOR FEW-SHOT TIME SERIES CLASSIFICATION
    Wang, Sherrie
    Russwurm, Marc
    Koerner, Marco
    Lobell, David B.
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 7041 - 7044