Fair Meta-Learning For Few-Shot Classification

被引:7
|
作者
Zhao, Chen [1 ]
Li, Changbin [1 ]
Li, Jincheng [1 ]
Chen, Feng [1 ]
机构
[1] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75083 USA
基金
美国国家科学基金会;
关键词
decision boundary covariance; statistical parity; few-shot; meta-learning;
D O I
10.1109/ICBK50248.2020.00047
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial intelligence nowadays plays an increasingly prominent role in our life since decisions that were once made by humans are now delegated to automated systems. A machine learning algorithm trained based on biased data, however, tends to make unfair predictions. Developing classification algorithms that are fair with respect to protected attributes of the data thus becomes an important problem. Motivated by concerns surrounding the fairness effects of sharing and few-shot machine learning tools, such as the Model Agnostic Meta-Learning [1] framework, we propose a novel fair fast-adapted few-shot meta-learning approach that efficiently mitigates biases during meta-train by ensuring controlling the decision boundary covariance that between the protected variable and the signed distance from the feature vectors to the decision boundary. Through extensive experiments on two real-world image benchmarks over three state-of-the-art meta-learning algorithms, we empirically demonstrate that our proposed approach efficiently mitigates biases on model output and generalizes both accuracy and fairness to unseen tasks with a limited amount of training samples.
引用
收藏
页码:275 / 282
页数:8
相关论文
共 50 条
  • [1] Few-Shot Directed Meta-Learning for Image Classification
    Ouyang, Jihong
    Duan, Ganghai
    Liu, Siguang
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (01)
  • [2] Unsupervised Meta-Learning for Few-Shot Image Classification
    Khodadadeh, Siavash
    Boloni, Ladislau
    Shah, Mubarak
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [3] Few-shot Edge Classification in Graph Meta-learning
    Yang, Xiaoxiao
    Xu, Jungang
    [J]. 2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 166 - 172
  • [4] Contrastive Meta-Learning for Few-shot Node Classification
    Wang, Song
    Tan, Zhen
    Liu, Huan
    Li, Jundong
    [J]. PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2386 - 2397
  • [5] Meta-Learning for Few-Shot Land Cover Classification
    Russwurm, Marc
    Wang, Sherrie
    Koerner, Marco
    Lobell, David
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 788 - 796
  • [6] Meta-Learning for Few-Shot Time Series Classification
    Narwariya, Jyoti
    Malhotra, Pankaj
    Vig, Lovekesh
    Shroff, Gautam
    Vishnu, T. V.
    [J]. PROCEEDINGS OF THE 7TH ACM IKDD CODS AND 25TH COMAD (CODS-COMAD 2020), 2020, : 28 - 36
  • [7] META-LEARNING FOR FEW-SHOT TIME SERIES CLASSIFICATION
    Wang, Sherrie
    Russwurm, Marc
    Koerner, Marco
    Lobell, David B.
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 7041 - 7044
  • [8] Fast Few-Shot Classification by Few-Iteration Meta-Learning
    Tripathi, Ardhendu Shekhar
    Danelljan, Martin
    Van Gool, Luc
    Timofte, Radu
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 9522 - 9528
  • [9] Prototype Bayesian Meta-Learning for Few-Shot Image Classification
    Fu, Meijun
    Wang, Xiaomin
    Wang, Jun
    Yi, Zhang
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [10] MetaDelta: A Meta-Learning System for Few-shot Image Classification
    Chen, Yudong
    Guan, Chaoyu
    Wei, Zhikun
    Wang, Xin
    Zhu, Wenwu
    [J]. AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 17 - 28