Unsupervised Meta-Learning for Few-Shot Image Classification

被引:0
|
作者
Khodadadeh, Siavash [1 ]
Boloni, Ladislau [1 ]
Shah, Mubarak [2 ]
机构
[1] Univ Cent Florida, Dept Comp Sci, Orlando, FL 32816 USA
[2] Univ Cent Florida, Ctr Res Comp Vis, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot or one-shot learning of classifiers requires a significant inductive bias towards the type of task to be learned. One way to acquire this is by meta-learning on tasks similar to the target task. In this paper, we propose UMTRA, an algorithm that performs unsupervised, model-agnostic meta-learning for classification tasks. The meta-learning step of UMTRA is performed on a flat collection of unlabeled images. While we assume that these images can be grouped into a diverse set of classes and are relevant to the target task, no explicit information about the classes or any labels are needed. UMTRA uses random sampling and augmentation to create synthetic training tasks for meta-learning phase. Labels are only needed at the final target task learning step, and they can be as little as one sample per class. On the Omniglot and Mini-Imagenet few-shot learning benchmarks, UMTRA outperforms every tested approach based on unsupervised learning of representations, while alternating for the best performance with the recent CACTUs algorithm. Compared to supervised model-agnostic meta-learning approaches, UMTRA trades off some classification accuracy for a reduction in the required labels of several orders of magnitude.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Unsupervised meta-learning for few-shot learning
    Xu, Hui
    Wang, Jiaxing
    Li, Hao
    Ouyang, Deqiang
    Shao, Jie
    PATTERN RECOGNITION, 2021, 116
  • [2] Unsupervised meta-learning for few-shot medical image classification based on metric learning
    Lv, Ding
    Zou, Beiji
    Kui, Xiaoyan
    Dai, Yulan
    Chen, Zeming
    Chen, Liming
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 105
  • [3] Few-Shot Directed Meta-Learning for Image Classification
    Ouyang, Jihong
    Duan, Ganghai
    Liu, Siguang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (01)
  • [4] Prototype Bayesian Meta-Learning for Few-Shot Image Classification
    Fu, Meijun
    Wang, Xiaomin
    Wang, Jun
    Yi, Zhang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15
  • [5] MetaDelta: A Meta-Learning System for Few-shot Image Classification
    Chen, Yudong
    Guan, Chaoyu
    Wei, Zhikun
    Wang, Xin
    Zhu, Wenwu
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 17 - 28
  • [6] Generative Probabilistic Meta-Learning for Few-Shot Image Classification
    Fu, Meijun
    Wang, Xiaomin
    Wang, Jun
    Yi, Zhang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [7] Fair Meta-Learning For Few-Shot Classification
    Zhao, Chen
    Li, Changbin
    Li, Jincheng
    Chen, Feng
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 275 - 282
  • [8] Unsupervised descriptor selection based meta-learning networks for few-shot classification
    Hu, Zhengping
    Li, Zijun
    Wang, Xueyu
    Zheng, Saiyue
    PATTERN RECOGNITION, 2022, 122
  • [9] Survey of Few-Shot Image Classification Based on Deep Meta-Learning
    Zhou, Bojun
    Chen, Zhiyu
    Computer Engineering and Applications, 2024, 60 (08) : 1 - 15
  • [10] MGML: Momentum group meta-learning for few-shot image classification
    Zhu, Xiaomeng
    Li, Shuxiao
    NEUROCOMPUTING, 2022, 514 : 351 - 361