AN ANALYTICAL APPROACH TO THE FRACTIONAL BIOLOGICAL POPULATION MODEL VIA EXPONENTIAL LAW AND MITTAG-LEFFLER KERNEL

被引:0
|
作者
Pareek, Neelu [1 ]
Gupta, Arvind [2 ]
机构
[1] Bhagatsingh Govt PG Coll, Dept Math, Ratlam, Madhya Pradesh, India
[2] MVM Coll, Dept Math, Bhopal, Madhya Pradesh, India
来源
关键词
biological population model; homotopy perturbation method; Atangana - Baleanu fractional operator; caputo - fabrizio fractional operator; HOMOTOPY PERTURBATION METHOD;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, analytical approximate solution of time fractional non-linear biological population model which arises as a result of spatial diffusion is proposed. Considering the fractional derivatives in Atangana-Baleanu-Caputo and Caputo-FabrizioCaputo sense, the Laplace transform technique has been employed in combination to the homotopy perturbation method. Examples corresponding to Malthusian and Verhulst laws are worked out and it is shown that in most of the cases the numerical solution converges to the exact solution. The numerical simulations are presented to depict the behavior of the solution corresponding to the variations in the fractional parameter and time.
引用
收藏
页码:57 / 72
页数:16
相关论文
共 50 条
  • [1] Chaos in a Cancer Model via Fractional Derivatives with Exponential Decay and Mittag-Leffler Law
    Francisco Gomez-Aguilar, Jose
    Guadalupe Lopez-Lopez, Maria
    Manuel Alvarado-Martinez, Victor
    Baleanu, Dumitru
    Khan, Hasib
    ENTROPY, 2017, 19 (12):
  • [2] Analytical approach for fractional extended Fisher–Kolmogorov equation with Mittag-Leffler kernel
    P. Veeresha
    D. G. Prakasha
    Jagdev Singh
    Ilyas Khan
    Devendra Kumar
    Advances in Difference Equations, 2020
  • [3] Analysis of the fractional diarrhea model with Mittag-Leffler kernel
    Iqbal, Muhammad Sajid
    Ahmed, Nauman
    Akgul, Ali
    Raza, Ali
    Shahzad, Muhammad
    Iqbal, Zafar
    Rafiq, Muhammad
    Jarad, Fahd
    AIMS MATHEMATICS, 2022, 7 (07): : 13000 - 13018
  • [4] On Solutions of Fractional Telegraph Model With Mittag-Leffler Kernel
    Akgul, Ali
    Modanli, Mahmut
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2022, 17 (02):
  • [5] An efficient approach for fractional nonlinear chaotic model with Mittag-Leffler law
    Veeresha, P.
    Prakasha, D. G.
    Abdel-Aty, Abdel-Haleem
    Singh, Harendra
    Mahmoud, Emad E.
    Kumar, Sunil
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (02)
  • [6] Analytical approach for fractional extended Fisher-Kolmogorov equation with Mittag-Leffler kernel
    Veeresha, P.
    Prakasha, D. G.
    Singh, Jagdev
    Khan, Ilyas
    Kumar, Devendra
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [7] Analytical and numerical negative boundedness of fractional differences with Mittag-Leffler kernel
    Mohammed, Pshtiwan Othman
    Dahal, Rajendra
    Goodrich, Christopher S.
    Hamed, Y. S.
    Baleanu, Dumitru
    AIMS MATHEMATICS, 2023, 8 (03): : 5540 - 5550
  • [8] FRACTIONAL DIRAC SYSTEMS WITH MITTAG-LEFFLER KERNEL
    Allahverd, Bilender P.
    Tuna, Huseyin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (01): : 1 - 12
  • [9] Fractional spatial diffusion of a biological population model via a new integral transform in the settings of power and Mittag-Leffler nonsingular kernel
    Rashid, Saima
    Kubra, Khadija Tul
    Ullah, Sana
    PHYSICA SCRIPTA, 2021, 96 (11)
  • [10] COMPARING THE NEW FRACTIONAL DERIVATIVE OPERATORS INVOLVING EXPONENTIAL AND MITTAG-LEFFLER KERNEL
    Yavuz, Mehmet
    Ozdemir, Necati
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 995 - 1006