AN ANALYTICAL APPROACH TO THE FRACTIONAL BIOLOGICAL POPULATION MODEL VIA EXPONENTIAL LAW AND MITTAG-LEFFLER KERNEL

被引:0
|
作者
Pareek, Neelu [1 ]
Gupta, Arvind [2 ]
机构
[1] Bhagatsingh Govt PG Coll, Dept Math, Ratlam, Madhya Pradesh, India
[2] MVM Coll, Dept Math, Bhopal, Madhya Pradesh, India
来源
关键词
biological population model; homotopy perturbation method; Atangana - Baleanu fractional operator; caputo - fabrizio fractional operator; HOMOTOPY PERTURBATION METHOD;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, analytical approximate solution of time fractional non-linear biological population model which arises as a result of spatial diffusion is proposed. Considering the fractional derivatives in Atangana-Baleanu-Caputo and Caputo-FabrizioCaputo sense, the Laplace transform technique has been employed in combination to the homotopy perturbation method. Examples corresponding to Malthusian and Verhulst laws are worked out and it is shown that in most of the cases the numerical solution converges to the exact solution. The numerical simulations are presented to depict the behavior of the solution corresponding to the variations in the fractional parameter and time.
引用
收藏
页码:57 / 72
页数:16
相关论文
共 50 条
  • [21] New approach for fractional Schrodinger-Boussinesq equations with Mittag-Leffler kernel
    Prakasha, Doddabhadrappla Gowda
    Malagi, Naveen Sanju
    Veeresha, Pundikala
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (17) : 9654 - 9670
  • [22] Study of fuzzy fractional order diffusion problem under the Mittag-Leffler Kernel Law
    Arfan, Muhammad
    Shah, Kamal
    Ullah, Aman
    Abdeljawad, Thabet
    PHYSICA SCRIPTA, 2021, 96 (07)
  • [23] A fractional order Covid-19 epidemic model with Mittag-Leffler kernel
    Khan, Hasib
    Ibrahim, Muhammad
    Abdel-Aty, Abdel-Haleem
    Khashan, M. Motawi
    Khan, Farhat Ali
    Khan, Aziz
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [24] Fractional modified Kawahara equation with Mittag-Leffler law
    Bhatter, Sanjay
    Mathur, Amit
    Kumar, Devendra
    Nisar, Kottakkaran Sooppy
    Singh, Jagdev
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [25] Analysis of projectile motion: A comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel
    J. F. Gómez-Aguilar
    R. F. Escobar-Jiménez
    M. G. López-López
    V. M. Alvarado-Martínez
    The European Physical Journal Plus, 133
  • [26] On the dynamics of fractional maps with power-law, exponential decay and Mittag-Leffler memory
    Avalos-Ruiz, L. F.
    Gomez-Aguilar, J. F.
    Atangana, A.
    Owolabi, Kolade M.
    CHAOS SOLITONS & FRACTALS, 2019, 127 : 364 - 388
  • [27] Analysis of projectile motion: A comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03):
  • [28] Modeling and analysis of fractional order Ebola virus model with Mittag-Leffler kernel
    Farman, Muhammad
    Akgul, Ali
    Abdeljawad, Thabet
    Naik, Parvaiz Ahmad
    Bukhari, Nabila
    Ahmad, Aqeel
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (03) : 2062 - 2073
  • [29] On some new properties of fractional derivatives with Mittag-Leffler kernel
    Baleanu, Dumitru
    Fernandez, Arran
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 444 - 462
  • [30] Study on fuzzy fractional European option pricing model with Mittag-Leffler kernel
    Hashemi, Hebatollah
    Ezzati, Reza
    Mikaeilvand, Naser
    Nazari, Mojtaba
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (05) : 8567 - 8582