Chaos in a Cancer Model via Fractional Derivatives with Exponential Decay and Mittag-Leffler Law

被引:47
|
作者
Francisco Gomez-Aguilar, Jose [1 ]
Guadalupe Lopez-Lopez, Maria [2 ]
Manuel Alvarado-Martinez, Victor [2 ]
Baleanu, Dumitru [3 ,4 ]
Khan, Hasib [5 ,6 ]
机构
[1] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[2] Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[3] Cankaya Univ, Fac Art & Sci, Dept Math, TR-06790 Ankara, Turkey
[4] Inst Space Sci, MG 23, R-76900 Magurele, Romania
[5] Hohai Univ, Coll Engn Mech & Mat, Nanjing 210098, Jiangsu, Peoples R China
[6] Shaheed Benazir Bhutto Univ Sheringal, Dept Math, Dir Upper 18000, Sheringal, Pakistan
来源
ENTROPY | 2017年 / 19卷 / 12期
关键词
cancer model; Caputo-Fabrizio fractional derivative; Atangana-Baleanu fractional derivative; Sumudu-Picard iterative method; DIFFERENTIAL-EQUATIONS; SYSTEM;
D O I
10.3390/e19120681
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a three-dimensional cancer model was considered using the Caputo-Fabrizio-Caputo and the new fractional derivative with Mittag-Leffler kernel in Liouville-Caputo sense. Special solutions using an iterative scheme via Laplace transform, Sumudu-Picard integration method and Adams-Moulton rule were obtained. We studied the uniqueness and existence of the solutions. Novel chaotic attractors with total order less than three are obtained.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] On the dynamics of fractional maps with power-law, exponential decay and Mittag-Leffler memory
    Avalos-Ruiz, L. F.
    Gomez-Aguilar, J. F.
    Atangana, A.
    Owolabi, Kolade M.
    CHAOS SOLITONS & FRACTALS, 2019, 127 : 364 - 388
  • [2] AN ANALYTICAL APPROACH TO THE FRACTIONAL BIOLOGICAL POPULATION MODEL VIA EXPONENTIAL LAW AND MITTAG-LEFFLER KERNEL
    Pareek, Neelu
    Gupta, Arvind
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2021, 20 (1-2): : 57 - 72
  • [3] On fractional derivatives with generalized Mittag-Leffler kernels
    Abdeljawad, Thabet
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [4] On fractional derivatives with generalized Mittag-Leffler kernels
    Thabet Abdeljawad
    Dumitru Baleanu
    Advances in Difference Equations, 2018
  • [5] Fractional derivatives of the generalized Mittag-Leffler functions
    Denghao Pang
    Wei Jiang
    Azmat U. K. Niazi
    Advances in Difference Equations, 2018
  • [6] Fractional derivatives of the generalized Mittag-Leffler functions
    Pang, Denghao
    Jiang, Wei
    Niazi, Azmat U. K.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [7] New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications
    J. F. Gómez-Aguilar
    Abdon Atangana
    The European Physical Journal Plus, 132
  • [8] New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications
    Gomez-Aguilar, J. F.
    Atangana, Abdon
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):
  • [9] Fractional optimal control dynamics of coronavirus model with Mittag-Leffler law
    Bonyah, Ebenezer
    Sagoe, Ato Kwamena
    Kumar, Devendra
    Deniz, Sinan
    ECOLOGICAL COMPLEXITY, 2021, 45
  • [10] An efficient approach for fractional nonlinear chaotic model with Mittag-Leffler law
    Veeresha, P.
    Prakasha, D. G.
    Abdel-Aty, Abdel-Haleem
    Singh, Harendra
    Mahmoud, Emad E.
    Kumar, Sunil
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (02)