Analytical and numerical negative boundedness of fractional differences with Mittag-Leffler kernel

被引:7
|
作者
Mohammed, Pshtiwan Othman [1 ]
Dahal, Rajendra [2 ]
Goodrich, Christopher S. [3 ]
Hamed, Y. S. [4 ]
Baleanu, Dumitru [5 ,6 ,7 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani 46001, Iraq
[2] Coastal Carolina Univ, Dept Math & Stat, Conway, SC 29526 USA
[3] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
[4] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, Taif 21944, Saudi Arabia
[5] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye
[6] Inst Space Sci, R-76900 Bucharest, Romania
[7] Lebanese Amer Univ, Sch Arts & Sci, Dept Nat Sci, Beirut 11022, Lebanon
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 03期
关键词
discrete fractional calculus; Mittag-Leffler type kernel; analytical and numerical monotonicity results; MONOTONICITY; NABLA; CONVEXITY; ORDER;
D O I
10.3934/math.2023279
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a class of fractional differences with Mittag-Leffler kernel can be negative and yet monotonicity information can still be deduced. Our results are complemented by numerical approximations. This adds to a growing body of literature illustrating that the sign of a fractional difference has a very complicated and subtle relationship to the underlying behavior of the function on which the fractional difference acts, regardless of the particular kernel used.
引用
收藏
页码:5540 / 5550
页数:11
相关论文
共 50 条
  • [1] FRACTIONAL DIRAC SYSTEMS WITH MITTAG-LEFFLER KERNEL
    Allahverd, Bilender P.
    Tuna, Huseyin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (01): : 1 - 12
  • [2] Analytical approach for fractional extended Fisher–Kolmogorov equation with Mittag-Leffler kernel
    P. Veeresha
    D. G. Prakasha
    Jagdev Singh
    Ilyas Khan
    Devendra Kumar
    Advances in Difference Equations, 2020
  • [3] NUMERICAL AND ANALYTICAL SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS INVOLVING FRACTIONAL OPERATORS WITH POWER AND MITTAG-LEFFLER KERNEL
    Yepez-Martinez, H.
    Gomez-Aguilar, J. F.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (01)
  • [4] On a New Definition of Fractional Differintegrals with Mittag-Leffler Kernel
    Fernandez, Arran
    Baleanu, Dumitru
    FILOMAT, 2019, 33 (01) : 245 - 254
  • [5] On the recurrent computation of fractional operator with Mittag-Leffler kernel
    Bohaienko, Vsevolod
    APPLIED NUMERICAL MATHEMATICS, 2021, 162 : 137 - 149
  • [6] A numerical approach for solving fractional optimal control problems with mittag-leffler kernel
    Jafari, Hossein
    Ganji, Roghayeh M.
    Sayevand, Khosro
    Baleanu, Dumitru
    JOURNAL OF VIBRATION AND CONTROL, 2022, 28 (19-20) : 2596 - 2606
  • [7] Analysis of the fractional diarrhea model with Mittag-Leffler kernel
    Iqbal, Muhammad Sajid
    Ahmed, Nauman
    Akgul, Ali
    Raza, Ali
    Shahzad, Muhammad
    Iqbal, Zafar
    Rafiq, Muhammad
    Jarad, Fahd
    AIMS MATHEMATICS, 2022, 7 (07): : 13000 - 13018
  • [8] On Solutions of Fractional Telegraph Model With Mittag-Leffler Kernel
    Akgul, Ali
    Modanli, Mahmut
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2022, 17 (02):
  • [9] Analytical approach for fractional extended Fisher-Kolmogorov equation with Mittag-Leffler kernel
    Veeresha, P.
    Prakasha, D. G.
    Singh, Jagdev
    Khan, Ilyas
    Kumar, Devendra
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [10] On some new properties of fractional derivatives with Mittag-Leffler kernel
    Baleanu, Dumitru
    Fernandez, Arran
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 444 - 462