Analytical and numerical negative boundedness of fractional differences with Mittag-Leffler kernel

被引:7
|
作者
Mohammed, Pshtiwan Othman [1 ]
Dahal, Rajendra [2 ]
Goodrich, Christopher S. [3 ]
Hamed, Y. S. [4 ]
Baleanu, Dumitru [5 ,6 ,7 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani 46001, Iraq
[2] Coastal Carolina Univ, Dept Math & Stat, Conway, SC 29526 USA
[3] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
[4] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, Taif 21944, Saudi Arabia
[5] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye
[6] Inst Space Sci, R-76900 Bucharest, Romania
[7] Lebanese Amer Univ, Sch Arts & Sci, Dept Nat Sci, Beirut 11022, Lebanon
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 03期
关键词
discrete fractional calculus; Mittag-Leffler type kernel; analytical and numerical monotonicity results; MONOTONICITY; NABLA; CONVEXITY; ORDER;
D O I
10.3934/math.2023279
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a class of fractional differences with Mittag-Leffler kernel can be negative and yet monotonicity information can still be deduced. Our results are complemented by numerical approximations. This adds to a growing body of literature illustrating that the sign of a fractional difference has a very complicated and subtle relationship to the underlying behavior of the function on which the fractional difference acts, regardless of the particular kernel used.
引用
收藏
页码:5540 / 5550
页数:11
相关论文
共 50 条
  • [31] Fractional wave equation with a frictional memory kernel of Mittag-Leffler type
    Tomovski, Zivorad
    Sandev, Trifce
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (20) : 10022 - 10031
  • [32] New Aspects of ZZ Transform to Fractional Operators With Mittag-Leffler Kernel
    Jena, Rajarama Mohan
    Chakraverty, Snehashish
    Baleanu, Dumitru
    Alqurashi, Maysaa M.
    FRONTIERS IN PHYSICS, 2020, 8
  • [33] A fractional order HIV/AIDS epidemic model with Mittag-Leffler kernel
    Muhammad Aslam
    Rashid Murtaza
    Thabet Abdeljawad
    Ghaus ur Rahman
    Aziz Khan
    Hasib Khan
    Haseena Gulzar
    Advances in Difference Equations, 2021
  • [34] Optimality conditions for fractional differential inclusions with nonsingular Mittag-Leffler kernel
    Bahaa, G. M.
    Hamiaz, Adnane
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [35] Theory and application for the time fractional Gardner equation with Mittag-Leffler kernel
    Korpinar, Zeliha
    Inc, Mustafa
    Baleanu, Dumitru
    Bayram, Mustafa
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 813 - 819
  • [36] A fractional order HIV/AIDS epidemic model with Mittag-Leffler kernel
    Aslam, Muhammad
    Murtaza, Rashid
    Abdeljawad, Thabet
    Rahman, Ghaus ur
    Khan, Aziz
    Khan, Hasib
    Gulzar, Haseena
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [37] A New Definition of Fractional Derivatives With Mittag-Leffler Kernel of Two Parameters
    Chinchole, S. M.
    Bhadane, A. P.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (01): : 19 - 26
  • [38] New bilingualism model based on fractional operators with Mittag-Leffler kernel
    Gomez-Aguilar, J. F.
    JOURNAL OF MATHEMATICAL SOCIOLOGY, 2017, 41 (03): : 172 - 184
  • [39] On the oscillation of Caputo fractional differential equations with Mittag-Leffler nonsingular kernel
    Abdalla, Bahaaeldin
    Abdeljawad, Thabet
    CHAOS SOLITONS & FRACTALS, 2019, 127 : 173 - 177
  • [40] On the approximation to fractional calculus operators with multivariate Mittag-Leffler function in the kernel
    Ozarslan, Mehmet Ali
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 454