Solving a fourth-order fractional diffusion-wave equation in a bounded domain by decomposition method

被引:43
|
作者
Jafari, Hossein [1 ]
Dehghan, Mehdi [2 ]
Sayevand, Khosro [3 ]
机构
[1] Univ Mazandaran, Dept Math & Comp Sci, Babol Sar, Iran
[2] Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran, Iran
[3] Univ Malayer, Dept Math, Malayer, Iran
关键词
Adomian decomposition method; bounded domain; caputo fractional derivative; fractional diffusion-wave equation; Mittag-Leffler function;
D O I
10.1002/num.20308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the Adomian decomposition method has been used to obtain solutions of fourth-order fractional diffusion-wave equation defined in a bounded space domain. The fractional derivative is described in the Caputo sense. Convergence of the method has been discussed with some illustrative examples. (C) 2007 Wiley Periodicals, Inc.
引用
下载
收藏
页码:1115 / 1126
页数:12
相关论文
共 50 条
  • [41] Analysis of a meshless method for the time fractional diffusion-wave equation
    Mehdi Dehghan
    Mostafa Abbaszadeh
    Akbar Mohebbi
    Numerical Algorithms, 2016, 73 : 445 - 476
  • [42] Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method
    Daftardar-Gejji, Varsha
    Bhalekar, Sachin
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) : 113 - 120
  • [43] Numerical Analysis for the Variable Order Time Fractional Diffusion-Wave Equation
    Tian, Fupeng
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (IEEE ICBDA 2020), 2020, : 131 - 134
  • [44] Analysis of a meshless method for the time fractional diffusion-wave equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    Mohebbi, Akbar
    NUMERICAL ALGORITHMS, 2016, 73 (02) : 445 - 476
  • [45] New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order
    Ran, Maohua
    Zhang, Chengjian
    APPLIED NUMERICAL MATHEMATICS, 2018, 129 : 58 - 70
  • [46] A fractional order diffusion-wave equation for time-dispersion media
    A. N. Bogolyubov
    A. A. Koblikov
    D. D. Smirnova
    N. E. Shapkina
    Moscow University Physics Bulletin, 2012, 67 : 423 - 428
  • [47] A fractional order diffusion-wave equation for time-dispersion media
    Bogolyubov, A. N.
    Koblikov, A. A.
    Smirnova, D. D.
    Shapkina, N. E.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2012, 67 (05) : 423 - 428
  • [48] Fourth-order numerical method for the Riesz space fractional diffusion equation with a nonlinear source term
    Mohebbi, Akbar
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (03): : 736 - 748
  • [49] A B-spline collocation method for solving fractional diffusion and fractional diffusion-wave equations
    Esen, A.
    Tasbozan, O.
    Ucar, Y.
    Yagmurlu, N. M.
    TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02) : 181 - 193
  • [50] Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains
    Ye, H.
    Liu, F.
    Anh, V.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 652 - 660