A fractional order diffusion-wave equation for time-dispersion media

被引:1
|
作者
Bogolyubov, A. N. [1 ]
Koblikov, A. A. [1 ]
Smirnova, D. D. [1 ]
Shapkina, N. E. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Dept Math, Moscow 11999, Russia
关键词
fractal electrodynamics; fractional integrodifferentiation; media with memory; time dispersion;
D O I
10.3103/S0027134912050037
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Electromagnetic fields in time-dispersion media with a power-law dependence on time are analyzed. It is shown that these media are fractal and their fractal dimension is determined. Equations for scalar and vector potentials are derived using analogues of Maxwell's equations for these types of media with the use of Caputo fractional derivatives. Electromagnetic fields in a bounded domain are numerically calculated for arbitrary functions of charge and current.
引用
收藏
页码:423 / 428
页数:6
相关论文
共 50 条
  • [1] A fractional order diffusion-wave equation for time-dispersion media
    A. N. Bogolyubov
    A. A. Koblikov
    D. D. Smirnova
    N. E. Shapkina
    [J]. Moscow University Physics Bulletin, 2012, 67 : 423 - 428
  • [2] CONTINUITY WITH RESPECT TO FRACTIONAL ORDER OF THE TIME FRACTIONAL DIFFUSION-WAVE EQUATION
    Nguyen Huy Tuan
    O'Regan, Donal
    Tran Bao Ngoc
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (03): : 773 - 793
  • [3] Fractional-order diffusion-wave equation
    ElSayed, AMA
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) : 311 - 322
  • [4] Numerical Analysis for the Variable Order Time Fractional Diffusion-Wave Equation
    Tian, Fupeng
    [J]. 2020 5TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (IEEE ICBDA 2020), 2020, : 131 - 134
  • [5] The fundamental solution of a diffusion-wave equation of fractional order
    Pskhu, A. V.
    [J]. IZVESTIYA MATHEMATICS, 2009, 73 (02) : 351 - 392
  • [6] Boundary stabilization and disturbance rejection for a time fractional order diffusion-wave equation
    Zhou, Hua-Cheng
    Wu, Ze-Hao
    Guo, Bao-Zhu
    Chen, Yangquan
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 3695 - 3700
  • [7] Simultaneous inversion for a fractional order and a time source term in a time-fractional diffusion-wave equation
    Liao, Kaifang
    Zhang, Lei
    Wei, Ting
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2023, 31 (05): : 631 - 652
  • [8] Backward problems in time for fractional diffusion-wave equation
    Floridia, G.
    Yamamoto, M.
    [J]. INVERSE PROBLEMS, 2020, 36 (12)
  • [9] Wavelets method for the time fractional diffusion-wave equation
    Heydari, M. H.
    Hooshmandasl, M. R.
    Ghaini, F. M. Maalek
    Cattani, C.
    [J]. PHYSICS LETTERS A, 2015, 379 (03) : 71 - 76
  • [10] OSCILLATION OF TIME FRACTIONAL VECTOR DIFFUSION-WAVE EQUATION WITH FRACTIONAL DAMPING
    Ramesh, R.
    Harikrishnan, S.
    Nieto, J. J.
    Prakash, P.
    [J]. OPUSCULA MATHEMATICA, 2020, 40 (02) : 291 - 305