A TOPOLOGICAL DUALITY FOR MILDLY DISTRIBUTIVE MEET-SEMILATTICES

被引:3
|
作者
Celani, Sergio A. [1 ]
Gonzalez, Luciano J. [2 ]
机构
[1] Univ Nacl Ctr, Pinto 399, RA-7000 Tandil, Argentina
[2] Univ Nacl La Pampa, Uruguay 151, RA-6300 Santa Rosa, Argentina
来源
基金
欧盟地平线“2020”;
关键词
Semilattices; distributivity on semilattices; duality theory; congruences;
D O I
10.33044/revuma.v59n2a04
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a topological duality for the category of mildly distributive meet-semilattices with a top element and certain morphisms between them. Then, we use this duality to characterize topologically the lattices of Frink ideals and filters, and we also obtain a topological representation for some congruences on mildly distributive meet-semilattices.
引用
收藏
页码:265 / 284
页数:20
相关论文
共 50 条
  • [41] GENERALIZATIONS OF TOPOLOGICAL SEMILATTICES
    MCMASTER, TB
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1973, 27 (SEP) : 222 - 242
  • [42] 0-Distributive Normal Join Semilattices
    Talukder, M. Rashed
    Gope, Rathindra C.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2021, 45 (02) : 263 - 272
  • [43] CONGRUENCE KERNELS OF DISTRIBUTIVE PJP-SEMILATTICES
    Begum, S. N.
    Noor, A. S. A.
    MATHEMATICA BOHEMICA, 2011, 136 (03): : 225 - 239
  • [44] A REPRESENTATION THEOREM FOR DISTRIBUTIVE SEMILATTICES - PRELIMINARY REPORT
    GASKILL, HS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (05): : 811 - &
  • [45] A CHARACTERIZATION OF TOLERANCE-DISTRIBUTIVE TREE SEMILATTICES
    CHAJDA, I
    ZELINKA, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1987, 37 (02) : 175 - 180
  • [46] Esakia Style Duality for Implicative Semilattices
    Bezhanishvili, Guram
    Jansana, Ramon
    APPLIED CATEGORICAL STRUCTURES, 2013, 21 (02) : 181 - 208
  • [47] Some Characterizations of 0-Distributive Semilattices
    Chakraborty, H. S.
    Talukder, M. R.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (04) : 1103 - 1110
  • [48] THE WORD PROBLEM IN THE TENSOR PRODUCT OF DISTRIBUTIVE SEMILATTICES
    FRASER, GA
    BELL, AM
    SEMIGROUP FORUM, 1984, 30 (01) : 117 - 120
  • [49] Esakia Style Duality for Implicative Semilattices
    Guram Bezhanishvili
    Ramon Jansana
    Applied Categorical Structures, 2013, 21 : 181 - 208
  • [50] DUALITY FOR DISTRIBUTIVE BISEMILATTICES
    GIERZ, G
    ROMANOWSKA, A
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1991, 51 : 247 - 275