A TOPOLOGICAL DUALITY FOR MILDLY DISTRIBUTIVE MEET-SEMILATTICES

被引:3
|
作者
Celani, Sergio A. [1 ]
Gonzalez, Luciano J. [2 ]
机构
[1] Univ Nacl Ctr, Pinto 399, RA-7000 Tandil, Argentina
[2] Univ Nacl La Pampa, Uruguay 151, RA-6300 Santa Rosa, Argentina
来源
基金
欧盟地平线“2020”;
关键词
Semilattices; distributivity on semilattices; duality theory; congruences;
D O I
10.33044/revuma.v59n2a04
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a topological duality for the category of mildly distributive meet-semilattices with a top element and certain morphisms between them. Then, we use this duality to characterize topologically the lattices of Frink ideals and filters, and we also obtain a topological representation for some congruences on mildly distributive meet-semilattices.
引用
收藏
页码:265 / 284
页数:20
相关论文
共 50 条
  • [31] Distributive Envelopes and Topological Duality for Lattices via Canonical Extensions
    Gehrke, Mai
    van Gool, Samuel J.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2014, 31 (03): : 435 - 461
  • [32] Some remarks on distributive semilattices
    Celani, Sergio
    Calomino, Ismael
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2013, 54 (03): : 407 - 428
  • [33] The median function on distributive semilattices
    McMorris, FR
    Mulder, HM
    Powers, RC
    DISCRETE APPLIED MATHEMATICS, 2003, 127 (02) : 319 - 324
  • [34] Distributive Envelopes and Topological Duality for Lattices via Canonical Extensions
    Mai Gehrke
    Samuel J. van Gool
    Order, 2014, 31 : 435 - 461
  • [35] Local separation in distributive semilattices
    Miroslav Ploščica
    algebra universalis, 2005, 54 : 323 - 335
  • [36] Non-representable distributive semilattices
    Ploscica, Miroslav
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (11) : 2503 - 2512
  • [37] Characterization of Distributive and Standard Ideals in Semilattices
    Kumar, Rama Ravi E. S.
    Rao, Venkateswara J.
    Kumar, Srinivas, V
    MOMONA ETHIOPIAN JOURNAL OF SCIENCE, 2011, 3 (01): : 20 - 36
  • [38] A Categorical Duality for Semilattices and Lattices
    Celani, Sergio A.
    Gonzalez, Luciano J.
    APPLIED CATEGORICAL STRUCTURES, 2020, 28 (05) : 853 - 875
  • [39] A Categorical Duality for Semilattices and Lattices
    Sergio A. Celani
    Luciano J. González
    Applied Categorical Structures, 2020, 28 : 853 - 875
  • [40] A NOTE ON TOPOLOGICAL SEMILATTICES
    MCWATERS, MM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 1 (1P1): : 64 - &