DUALITY FOR DISTRIBUTIVE BISEMILATTICES

被引:14
|
作者
GIERZ, G [1 ]
ROMANOWSKA, A [1 ]
机构
[1] WARSAW POLYTECH INST,INST MATH,PL-00661 WARSAW,POLAND
关键词
D O I
10.1017/S1446788700034224
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a duality between distributive bisemilattices and certain compact left normal bands. The main technique in the proof utilizes the idea of Plonka sums.
引用
收藏
页码:247 / 275
页数:29
相关论文
共 50 条
  • [1] A Duality for Involutive Bisemilattices
    Bonzio, Stefano
    Loi, Andrea
    Peruzzi, Luisa
    STUDIA LOGICA, 2019, 107 (02) : 423 - 444
  • [2] A Duality for Involutive Bisemilattices
    Stefano Bonzio
    Andrea Loi
    Luisa Peruzzi
    Studia Logica, 2019, 107 : 423 - 444
  • [3] DUALITY FOR DISTRIBUTIVE SPACES
    Hofmann, Dirk
    THEORY AND APPLICATIONS OF CATEGORIES, 2013, 28 : 66 - 122
  • [4] THE DUALITY OF DISTRIBUTIVE CONTINUOUS LATTICES
    BANASCHEWSKI, B
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (02): : 385 - 394
  • [5] Stone style duality for distributive nearlattices
    Sergio Celani
    Ismael Calomino
    Algebra universalis, 2014, 71 : 127 - 153
  • [6] REMARKS ON PRIESTLEY DUALITY FOR DISTRIBUTIVE LATTICES
    CIGNOLI, R
    LAFALCE, S
    PETROVICH, A
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1991, 8 (03): : 299 - 315
  • [7] Stone style duality for distributive nearlattices
    Celani, Sergio
    Calomino, Ismael
    ALGEBRA UNIVERSALIS, 2014, 71 (02) : 127 - 153
  • [8] A Spectral-style Duality for Distributive Posets
    Luciano J. González
    Ramon Jansana
    Order, 2018, 35 : 321 - 347
  • [9] Stone like duality in almost distributive lattices
    Rao, G. C.
    Katakam, S. B. T. Sundari
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2014, 7 (03)
  • [10] Distributive Lattices with a Generalized Implication: Topological Duality
    Castro, Jorge E.
    Arturo Celani, Sergio
    Jansana, Ramon
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2011, 28 (02): : 227 - 249