Estimating RNA Loop Entropies Using a New Nucleobase Model and Sequential Monte Carlo Method

被引:0
|
作者
Lin Hui [1 ]
Zhang Jian
机构
[1] Nanjing Univ, Sch Business, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
STRANDED CHAIN MOLECULES; THERMODYNAMIC PARAMETERS; SECONDARY STRUCTURE; PREDICTION; POLYMER;
D O I
10.1088/0256-307X/28/8/088702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a new scheme that is designed to accurately and efficiently compute the entropy of RNA loops. The scheme is based on a new RNA nucleobase discrete state (RNAnbds) model and a Sequential Monte Carlo (SMC) method. The novelty of the RNAnbds model is that it directly represents the conformation of the RNA nucleobases, instead of the RNA backbones. To test the performance of this new scheme, we calculate the entropies for RNA hairpin loops and compare the results with the exact computational values obtained by an enumeration strategy and with the experimental data. It is found that the SMC method gives almost indistinguishable results from enumerations for short loops. For long hairpin loops, it also provides a good estimation that agrees with experiments.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Estimating the lognormal-gamma model of operational risk using the Markov chain Monte Carlo method
    Ergashev, Bakhodir
    JOURNAL OF OPERATIONAL RISK, 2009, 4 (01): : 35 - 57
  • [32] A COMBINED MONTE CARLO AND QUASI-MONTE CARLO METHOD FOR ESTIMATING MULTIDIMENSIONAL INTEGRALS
    Rosca, Natalia
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (01): : 125 - 140
  • [33] Estimating the parameters of dynamical systems from Big Data using Sequential Monte Carlo samplers
    Green, P. L.
    Maskell, S.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 93 : 379 - 396
  • [34] Harmonic tracking using sequential Monte Carlo
    Dubois, Corentin
    Davy, Manuel
    2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2, 2005, : 1212 - 1216
  • [35] A Bayesian approach to multiscale inverse problems using the sequential Monte Carlo method
    Wan, Jiang
    Zabaras, Nicholas
    INVERSE PROBLEMS, 2011, 27 (10)
  • [36] Distribution System Reliability Assessment Using Sequential Multilevel Monte Carlo Method
    Huda, A. S. N.
    Zivanovic, Rastko
    2016 IEEE INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT-ASIA), 2016, : 867 - 872
  • [37] Smart Grids Reliability Indices Assessment Using Sequential Monte Carlo Method
    Mancasi, Monica
    Vatu, Ramona
    2015 IEEE 15TH INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING (IEEE EEEIC 2015), 2015, : 2072 - 2077
  • [38] Ground bounce tracking for landmine detection using a sequential Monte Carlo method
    Tang, Li
    Torrione, Peter A.
    Eldeniz, Cihat
    Collins, Leslie M.
    DETECTION AND REMEDIATION TECHNOLOGIES FOR MINES AND MINELIKE TARGETS XII, 2007, 6553
  • [39] Reliability Estimating of Existing Bridge Using Dynamic Monte-Carlo Method
    Peng, Ke-ke
    Huang, Pei-yan
    ADVANCES IN STRUCTURES, PTS 1-5, 2011, 163-167 : 3156 - 3160
  • [40] A Deterministic Sequential Monte Carlo Method for Haplotype Inference
    Liang, Kuo-ching
    Wang, Xiaodong
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2008, 2 (03) : 322 - 331