Estimating the parameters of dynamical systems from Big Data using Sequential Monte Carlo samplers

被引:17
|
作者
Green, P. L. [1 ,3 ]
Maskell, S. [2 ,3 ]
机构
[1] Univ Liverpool, Sch Engn, Liverpool L69 7ZF, Merseyside, England
[2] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 7ZF, Merseyside, England
[3] Univ Liverpool, Inst Risk & Uncertainty, Liverpool L69 7ZF, Merseyside, England
关键词
Big Data; Parameter estimation; Model updating; System identification; Sequential Monte Carlo sampler; TRAINING DATA; IDENTIFICATION; MODELS;
D O I
10.1016/j.ymssp.2016.12.023
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper the authors present a method which facilitates computationally efficient parameter estimation of dynamical systems from a continuously growing set of measurement data. It is shown that the proposed method, which utilises Sequential Monte Carlo samplers, is guaranteed to be fully parallelisable (in contrast to Markov chain Monte Carlo methods) and can be applied to a wide variety of scenarios within structural dynamics. Its ability to allow convergence of one's parameter estimates, as more data is analysed, sets it apart from other sequential methods (such as the particle filter). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:379 / 396
页数:18
相关论文
共 50 条
  • [1] Sequential Monte Carlo samplers
    Del Moral, Pierre
    Doucet, Arnaud
    Jasra, Ajay
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 : 411 - 436
  • [2] Parameter estimation from big data using a sequential monte carlo sampler
    Green, P. L.
    Maskell, S.
    PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 4111 - 4119
  • [3] An Invitation to Sequential Monte Carlo Samplers
    Dai, Chenguang
    Heng, Jeremy
    Jacob, Pierre E.
    Whiteley, Nick
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1587 - 1600
  • [4] Multilevel sequential Monte Carlo samplers
    Beskos, Alexandros
    Jasra, Ajay
    Law, Kody
    Tempone, Raul
    Zhou, Yan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (05) : 1417 - 1440
  • [5] Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo
    Schon, Thomas B.
    Svensson, Andreas
    Murray, Lawrence
    Lindsten, Fredrik
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 104 : 866 - 883
  • [6] Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals
    South, L. F.
    Pettitt, A. N.
    Drovandi, C. C.
    BAYESIAN ANALYSIS, 2019, 14 (03): : 753 - 776
  • [7] Multilevel Sequential Monte Carlo Samplers for Normalizing Constants
    Del Moral, Pierre
    Jasra, Ajay
    Law, Kody J. H.
    Zhou, Yan
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2017, 27 (03):
  • [8] Analysis of a sequential Monte Carlo method for optimization in dynamical systems
    Miguez, Joaquin
    SIGNAL PROCESSING, 2010, 90 (05) : 1609 - 1622
  • [9] Monte Carlo methods for estimating the extreme response of dynamical systems
    Naess, A.
    Gaidai, O.
    JOURNAL OF ENGINEERING MECHANICS, 2008, 134 (08) : 628 - 636
  • [10] Error bounds for sequential Monte Carlo samplers for multimodal distributions
    Paulin, Daniel
    Jasra, Ajay
    Thiery, Alexandre
    BERNOULLI, 2019, 25 (01) : 310 - 340