A Bayesian approach to multiscale inverse problems using the sequential Monte Carlo method

被引:28
|
作者
Wan, Jiang [1 ]
Zabaras, Nicholas [1 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Mat Proc Design & Control Lab, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
POROUS-MEDIA FLOW; COMPUTATION; CALIBRATION;
D O I
10.1088/0266-5611/27/10/105004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new Bayesian computational approach is developed to estimate spatially varying parameters. The sparse grid collocation method is adopted to parameterize the spatial field. Based on a hierarchically structured sparse grid, a multiscale representation of the spatial field is constructed. An adaptive refinement strategy is then used for computing the spatially varying parameter. A sequential Monte Carlo (nSMC) sampler is used to explore the posterior distributions defined on multiple scales. The SMC sampling is directly parallelizable and is superior to conventional Markov chain Monte Carlo methods for multi-modal target distributions. The samples obtained at coarser levels of resolution are used to provide prior information for the estimation at finer levels. This Bayesian computational approach is rather general and applicable to various spatially varying parameter estimation problems. The method is demonstrated with the estimation of permeability in flows through porous media.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Sequential Monte Carlo methods for Bayesian elliptic inverse problems
    Beskos, Alexandros
    Jasra, Ajay
    Muzaffer, Ege A.
    Stuart, Andrew M.
    [J]. STATISTICS AND COMPUTING, 2015, 25 (04) : 727 - 737
  • [2] Sequential Monte Carlo methods for Bayesian elliptic inverse problems
    Alexandros Beskos
    Ajay Jasra
    Ege A. Muzaffer
    Andrew M. Stuart
    [J]. Statistics and Computing, 2015, 25 : 727 - 737
  • [3] Multilevel Sequential2 Monte Carlo for Bayesian inverse problems
    Latz, Jonas
    Papaioannou, Iason
    Ullmann, Elisabeth
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 368 : 154 - 178
  • [4] Multi-index Sequential Monte Carlo Ratio Estimators for Bayesian Inverse problems
    Jasra, Ajay
    Law, Kody J. H.
    Walton, Neil
    Yang, Shangda
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024, 24 (04) : 1249 - 1304
  • [5] BAYESIAN INVERSE PROBLEMS WITH MONTE CARLO FORWARD MODELS
    Bal, Guillaume
    Langmore, Ian
    Marzouk, Youssef
    [J]. INVERSE PROBLEMS AND IMAGING, 2013, 7 (01) : 81 - 105
  • [6] Model Discrimination in Copolymerization Using the Sequential Bayesian Monte Carlo Method
    Masoumi, Samira
    Duever, Thomas A.
    [J]. MACROMOLECULAR THEORY AND SIMULATIONS, 2016, 25 (05) : 435 - 448
  • [7] Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method
    Wang, Liangliang
    Bouchard-Cote, Alexandre
    Doucet, Arnaud
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (512) : 1362 - 1374
  • [8] A Bayesian approach to find Pareto optima in multiobjective programming problems using Sequential Monte Carlo algorithms
    Tsionas, Mike G.
    [J]. OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2018, 77 : 73 - 79
  • [9] A sequential Monte Carlo method for Bayesian face recognition
    Matsui, Atsushi
    Clippingdale, Simon
    Matsumoto, Takashi
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2006, 4109 : 578 - 586
  • [10] An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics
    Wang, Liangliang
    Wang, Shijia
    Bouchard-Cote, Alexandre
    [J]. SYSTEMATIC BIOLOGY, 2020, 69 (01) : 155 - 183