Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks

被引:14
|
作者
Pfister, Martin [1 ,2 ,3 ]
Schuetzenberger, Kornelia [1 ,2 ]
Pfeiffenberger, Ulrike [1 ,2 ]
Messner, Alina [1 ]
Chen, Zhe [1 ]
dos Santos, Valentin Aranha [1 ]
Puchner, Stefan [1 ,2 ,4 ]
Garhoefer, Gerhard [2 ,4 ]
Schmetterer, Leopold [1 ,2 ,4 ,5 ,6 ,7 ]
Groeschl, Martin [3 ]
Werkmeister, Rene M. [1 ,2 ]
机构
[1] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[2] Med Univ Vienna, Christian Doppler Lab Ocular & Dermal Effects Thi, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[3] Vienna Univ Technol, Inst Appl Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[4] Med Univ Vienna, Dept Clin Pharmacol, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[5] The Academia, Singapore Eye Res Inst, 20 Coll Rd,Discovery Tower Level 6, Singapore 169856, Singapore
[6] Nanyang Technol Univ, Lee Kong Chian Sch Med, Novena Campus,11 Mandalay Rd, Singapore 308232, Singapore
[7] Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Program, 8 Coll Rd, Singapore 169857, Singapore
关键词
Compendex;
D O I
10.1364/BOE.10.001315
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present a system for automatic determination of the intradermal volume of hydrogels based on optical coherence tomography (OCT) and deep learning. Volumetric image data was acquired using a custom-built OCT prototype that employs an akinetic swept laser at similar to 1310 nm with a bandwidth of 87 nm, providing an axial resolution of similar to 6.5 mu m in tissue. Three-dimensional data sets of a 10 mm x 10 mm skin patch comprising the intradermal filler and the surrounding tissue were acquired. A convolutional neural network using a u-net-like architecture was trained from slices of 100 OCT volume data sets where the dermal filler volume was manually annotated. Using six-fold cross-validation, a mean accuracy of 0.9938 and a Jaccard similarity coefficient of 0.879 were achieved. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1315 / 1328
页数:14
相关论文
共 50 条
  • [1] Automated segmentation of the ciliary muscle in OCT images using fully convolutional networks
    Cabeza-Gil, Iulen
    Ruggeri, Marco
    Chang, Yu-Cherng
    Calvo, Begona
    Manns, Fabrice
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (05) : 2810 - 2823
  • [2] Automatic segmentation of retinal and choroidal thickness in OCT images using convolutional neural networks
    Alonso-Caneiro, David
    Read, Scott A.
    Hamwood, Jared
    Vincent, Stephen
    Collins, Michael J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [3] RETINAL FLUID SEGMENTATION IN OCT IMAGES USING ADVERSARIAL LOSS BASED CONVOLUTIONAL NEURAL NETWORKS
    Tennakoon, Ruwan
    Gostar, Amirali K.
    Hoseinnezhad, Reza
    Bab-Hadiashar, Alireza
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1436 - 1440
  • [4] Automatic segmentation of nine layer boundaries in OCT images using convolutional neural networks and graph search
    Fang, Leyuan
    Wang, Chong
    Cunefare, David
    Guymer, Robyn H.
    Farsiu, Sina
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [5] Automated Geographic Atrophy Segmentation in Infrared Reflectance Images Using Deep Convolutional Neural Networks
    Hu, Zhihong
    Wang, Ziyuan
    Abdelfattah, Nizar Saleh
    Sadda, Jaya
    Sadda, Srinivas R.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [6] Automated Segmentation and Morphological Analyses of Stockpile Aggregate Images using Deep Convolutional Neural Networks
    Huang, Haohang
    Luo, Jiayi
    Tutumluer, Erol
    Hart, John M.
    Stolba, Andrew J.
    TRANSPORTATION RESEARCH RECORD, 2020, 2674 (10) : 285 - 298
  • [7] Automated Segmentation of the Choroid in EDI-OCT Images with Retinal Pathology Using Convolution Neural Networks
    Chen, Min
    Wang, Jiancong
    Oguz, Ipek
    VanderBeek, Brian L.
    Gee, James C.
    FETAL, INFANT AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2017, 10554 : 177 - 184
  • [8] Segmentation of Coring Images using Fully Convolutional Neural Networks
    Fazekas, Szilard Zsolt
    Obrochta, Stephen
    Sato, Tatsuhiko
    Yamamura, Akihiro
    2017 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), 2017,
  • [9] Segmentation of hyperspectral images using quantized convolutional neural networks
    Lorenzo, Pablo Ribalta
    Marcinkiewicz, Michal
    Nalepa, Jakub
    2018 21ST EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2018), 2018, : 260 - 267
  • [10] Guitar Segmentation in RGB Images Using Convolutional Neural Networks
    Tono, Ilaria
    Gallego, Jaime
    Swiderska-Chadaj, Zaneta
    Slater, Mel
    PROCEEDINGS OF 2020 IEEE 21ST INTERNATIONAL CONFERENCE ON COMPUTATIONAL PROBLEMS OF ELECTRICAL ENGINEERING (CPEE), 2020,