Unsupervised learning and mapping of brain fMRI signals based on hidden semi-Markov event sequence models

被引:0
|
作者
Faisan, S
Thoraval, L
Armspach, JP
Heitz, F
机构
[1] ENSPS, CNRS, UMR 7005, MIV,LSIIT, F-67400 Illkirch Graffenstaden, France
[2] Fac Med Strasbourg, CNRS, UMR 7004, Inst Phys Biol, F-67085 Strasbourg, France
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Most methods used in functional MRI (fMRI) brain mapping require restrictive prior knowledge about the shape of the active blood-oxygenation-level-dependent (BOLD) response, thus leading to suboptimal or invalid inference. To solve this problem, we propose to assess local neural activity in terms of time alignment between the sequence of BOLD dynamics changes of interest and an Hidden Semi-Markov Event Sequence Model (HSMESM) of brain activation. The topology of the HSMESM is built from the deterministic transitions of the input stimulation paradigm and its parameters are automatically and iteratively learned from all intracranial fMRI signals. The brain mapping results achieved by HSMESMs in language processing demonstrate the relevance of such models in BOLD fMRI, especially to cope with strong variabilities of the active BOLD signal across time, brain, experiments and subjects.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [1] Unsupervised learning and mapping of active brain functional MRI signals based on hidden semi-Markov event sequence models
    Faisan, S
    Thoraval, L
    Armspach, JP
    Metz-Lutz, MN
    Heitz, F
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (02) : 263 - 276
  • [2] Hidden semi-Markov event sequence models: Application to brain functional MRI sequence analysis
    Faisan, S
    Thoraval, L
    Armspach, JP
    Heitz, F
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2002, : 880 - 883
  • [3] Hidden Markov event sequence models: Toward unsupervised functional MRI brain mapping
    Faisan, S
    Thoraval, L
    Armspach, JP
    Foucher, JR
    Metz-Lutz, MN
    Heitz, F
    ACADEMIC RADIOLOGY, 2005, 12 (01) : 25 - 36
  • [4] Unsupervised Classification of Human Activity with Hidden Semi-Markov Models
    Cavallo, Francesca Romana
    Toumazou, Christofer
    Nikolic, Konstantin
    APPLIED SYSTEM INNOVATION, 2022, 5 (04)
  • [5] Hidden semi-Markov models
    Yu, Shun-Zheng
    ARTIFICIAL INTELLIGENCE, 2010, 174 (02) : 215 - 243
  • [6] Feature Selection for Hidden Markov Models and Hidden Semi-Markov Models
    Adams, Stephen
    Beling, Peter A.
    Cogill, Randy
    IEEE ACCESS, 2016, 4 : 1642 - 1657
  • [7] Asynchronous Brain Computer Interface using Hidden Semi-Markov Models
    Oliver, Gareth
    Sunehag, Peter
    Gedeon, Tom
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 2728 - 2731
  • [8] Bayesian nonparametric Hidden semi-Markov models
    Johnson, Matthew J.
    Willsky, Alan S.
    Journal of Machine Learning Research, 2013, 14 (01) : 673 - 701
  • [9] Hidden Semi-Markov Models for Predictive Maintenance
    Cartella, Francesco
    Lemeire, Jan
    Dimiccoli, Luca
    Sahli, Hichem
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [10] Bayesian Nonparametric Hidden Semi-Markov Models
    Johnson, Matthew J.
    Willsky, Alan S.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 673 - 701