Unsupervised learning and mapping of brain fMRI signals based on hidden semi-Markov event sequence models

被引:0
|
作者
Faisan, S
Thoraval, L
Armspach, JP
Heitz, F
机构
[1] ENSPS, CNRS, UMR 7005, MIV,LSIIT, F-67400 Illkirch Graffenstaden, France
[2] Fac Med Strasbourg, CNRS, UMR 7004, Inst Phys Biol, F-67085 Strasbourg, France
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Most methods used in functional MRI (fMRI) brain mapping require restrictive prior knowledge about the shape of the active blood-oxygenation-level-dependent (BOLD) response, thus leading to suboptimal or invalid inference. To solve this problem, we propose to assess local neural activity in terms of time alignment between the sequence of BOLD dynamics changes of interest and an Hidden Semi-Markov Event Sequence Model (HSMESM) of brain activation. The topology of the HSMESM is built from the deterministic transitions of the input stimulation paradigm and its parameters are automatically and iteratively learned from all intracranial fMRI signals. The brain mapping results achieved by HSMESMs in language processing demonstrate the relevance of such models in BOLD fMRI, especially to cope with strong variabilities of the active BOLD signal across time, brain, experiments and subjects.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [21] Offline and online identification of hidden semi-Markov models
    Azimi, M
    Nasiopoulos, P
    Ward, RK
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) : 2658 - 2663
  • [22] On Efficient Viterbi Decoding for Hidden semi-Markov Models
    Datta, Ritendra
    Hu, Jianying
    Ray, Bonnie
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2593 - 2596
  • [23] A Spectral Algorithm for Inference in Hidden semi-Markov Models
    Melnyk, Igor
    Banerjee, Arindam
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [24] Maximum likelihood estimation for hidden semi-Markov models
    Barbu, V
    Limnios, N
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (03) : 201 - 205
  • [25] Nonhomogeneous hidden semi-Markov models for toroidal data
    Lagona, Francesco
    Mingione, Marco
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024,
  • [26] Unsupervised segmentation of hidden semi-Markov non-stationary chains
    Lapuyade-Lahorgue, Jerome
    Pieczynski, Wojciech
    SIGNAL PROCESSING, 2012, 92 (01) : 29 - 42
  • [27] hhsmm: an R package for hidden hybrid Markov/semi-Markov models
    Morteza Amini
    Afarin Bayat
    Reza Salehian
    Computational Statistics, 2023, 38 : 1283 - 1335
  • [28] Scalable Bayesian Inference for Coupled Hidden Markov and Semi-Markov Models
    Touloupou, Panayiota
    Finkenstadt, Barbel
    Spencer, Simon E. F.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (02) : 238 - 249
  • [29] hhsmm: an R package for hidden hybrid Markov/semi-Markov models
    Amini, Morteza
    Bayat, Afarin
    Salehian, Reza
    COMPUTATIONAL STATISTICS, 2023, 38 (03) : 1283 - 1335
  • [30] Dynamic Hand Gesture Early Recognition based on Hidden Semi-Markov Models
    Wang, Qianqian
    Xu, Yuanrong
    Chen, Yen-Lun
    Wang, Yong
    Wu, Xinyu
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS IEEE-ROBIO 2014, 2014, : 654 - 658